Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\] Timothy Chu.
Problem
Source: ELMO Shortlist 2010, N2
Tags: modular arithmetic, algebra, difference of squares, special factorizations, number theory proposed, number theory
04.09.2012 05:27
Zhero wrote: Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\] Timothy Chu. Typo edited Note that we have by difference of squares: \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}\] \[\Leftrightarrow (\sum_{k=1}^{p-1}k^{-1})(p\sum_{k=1}^{p-1}k^{-1}+2)\equiv -p\sum_{k=1}^{p-1}k^{-2}\mod p^3\] Since $2\sum_{k=1}^{p-1}k^{-1}=\sum_{k=1}^{p-1}\frac{1}{k(p-k)}$ and $p\sum_{k=1}^{p-1}k^{-1}\equiv 0\mod p^2$, this is: \[\Leftrightarrow 2(\sum_{k=1}^{p-1}\frac{1}{k(p-k)})\equiv -2\sum_{k=1}^{p-1}k^{-2}\mod p^2\] \[\Leftrightarrow \sum_{k=1}^{p-1}(\frac{1}{k^2}+\frac{1}{k(p-k)})\equiv 0\mod p^2\] \[\Leftrightarrow \sum_{k=1}^{p-1}\frac{1}{k^2(p-k)}\equiv 0\mod p\] \[\Leftrightarrow \sum_{k=1}^{p-1}(\frac{1}{k})^3\equiv 0\mod p\] Which is true since \[\sum_{k=1}^{p-1}(\frac{1}{k})^3\equiv \sum_{k=1}^{p-1}k^3\equiv \frac{p^2(p+1)^2}{4}\equiv 0\mod p\] As desired.
04.09.2012 19:45
A bit different: let $S_k = \sum_{i=1}^{p-1} i^{-k}$. By Wolstenholme's we have $S_1 \equiv 0 \mod p^2$, therefore it remains to prove: \[1 + 2pS_1 \equiv 1-p^2 S_2 \pmod{p^4} \iff 2S_1 \equiv -pS_2 \pmod{p^3}.\] Note that $S_1 = p \sum_{i=1}^{(p-1)/2} \frac{1}{i(p-i)}$ and $S_2 = \sum_{i=1}^{(p-1)/2} \frac{p^2 - 2pi + 2i^2}{i^2 (p-i)^2}$ by pairing terms of the form $i$ and $p-i.$ Thus, the problem is reduced to \[2 \cdot \sum_{i=1}^{(p-1)/2} \frac{1}{i(p-i)} \equiv -\sum_{i=1}^{(p-1)/2} \frac{p^2 - 2pi + 2i^2}{i^2 (p-i)^2} \pmod{p^2} \\ \iff \sum_{i=1}^{(p-1)/2} \frac{1}{i(p-i)} \equiv \sum_{i=1}^{(p-1)/2} \frac{i(p-i)}{i^2 (p-i)^2} \pmod{p^2}, \] which is clear since both sides are equal.
04.09.2012 23:08
The following is also true: Given a prime $p>5$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^5}.\]
13.04.2020 03:50
05.07.2020 13:02
05.07.2020 15:01
Missing cherry on top identity for extension proof. So obvious, but nobody has written it? $$\sum_{k=1}^nk^4=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$
17.09.2021 09:42
Zhero wrote: Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\] Timothy Chu.