Let be given $r_1,r_2,\ldots,r_n \in \mathbb R$. Show that there exists a subset $I$ of $\{1,2,\ldots,n \}$ which which has one or two elements in common with the sets $\{i,i + 1,i + 2\} , (1 \leq i \leq n- 2)$ such that \[\left| {\mathop \sum \limits_{i \in I} {r_i}} \right| \geqslant \frac{1}{6}\mathop \sum \limits_{i = 1}^n \left| {{r_i}} \right|.\]
Problem
Source: Iran Third Round MO 1998, Exam 4, P4
Tags: combinatorics, combinatorics proposed
16.06.2017 09:41
Anyone with solution?
26.08.2017 13:16
TROLLLLLLOLOLOLOLOOLOLLLLL THIS IS NOT INEQUALITY NOR NT(Anyway,beautiful problem. )
31.08.2017 22:09
Let $N=\{1,2,...,n\}$ WLOG, $\sum _{i=1}^{n} r_i \ge 0$ Let $P=\{i|r_i \ge 0\}$ $Q=\{i|r_i < 0\}$ $p= \sum _{i\in P} r_i$ $q= \sum _{i\in Q} r_i$ From the condition above, $p+q\ge0$ Consider $A=\{i | i \equiv 1 (mod3), i \in N \vee i \equiv 2 (mod3), i \in P\}$ $B=\{i | i \equiv 2 (mod3), i \in N \vee i \equiv 0 (mod3), i \in P\}$ $C=\{i | i \equiv 0 (mod3), i \in N \vee i \equiv 1 (mod3), i \in P\}$ It is easy to see that all of $A,B,C$ satisfy the condition. Consider $|\sum_ {i \in A} r_i|+|\sum_ {i \in B} r_i|+|\sum _{i \in C} r_i|\ge\sum_ {i \in A} r_i+\sum_ {i \in B} r_i+\sum _{i \in C} r_i$ $=\ge 2p+q$ $=\ge \frac{p-q}{2}$ $= \frac{\sum _{i=1}^{n} |r_i|}{2}$ Thus, there exists $I \in \{A,B,C\}$ such that $I$ satisfy the condition and $|\sum _{i \in I} r_i| \ge \frac{\sum _{i=1}^{n} |r_i|}{6}$
03.09.2017 05:55
The above doesn't work because there can be a "gap" in each of $A,B,C$ of size at least three, which would contradict the condition $| I \cap \{i,i+1,i+2\}|\ge 1$. Let $A_1$ be the set of indices $i$ with $r_i \ge 0$, $i\equiv 1$ mod $3$ and define $A_2,A_3$ similarly. Also let $B_1$ be the set of indices $i$ with $r_i <0$, $i\equiv 1$ mod $3$ and define $B_2,B_3$ similarly. Let $a_1 = \displaystyle\sum_{i\in A_1} r_i$ and define $a_2,a_3,b_1,b_2,b_3$ similarly and let $s = \displaystyle\sum_i |r_i|$. Clearly $s = a_1+a_2+a_3-b_1-b_2-b_3$. WLOG suppose $a_1+a_2+a_3+b_1+b_2+b_3 \ge 0$. Then $a_1+a_2+a_3 \ge 0.5s$, hence for some two distinct $i,j$ we have $a_i+a_j \ge \dfrac{s}{3}$. Now suppose $a_i+a_j+b_i+b_j \ge 0$. Then note that $(a_i+a_j + b_i) + (a_i+a_j+b_j) \ge a_i+a_j \ge \dfrac{s}{3}$, so one of $a_i+a_j+b_i, a_i+a_j+b_i$ is at least $\dfrac{s}{6}$. WLOG suppose the first sum is; then setting $I = A_i\cup A_j\cup B_i$ works. Similarly if $a_i+a_j+b_i+b_j \le 0$ we consider $(a_i + b_i + b_j) + (a_j + b_i + b_j) \le -\dfrac{s}{3}$ to get another working set $I$.