Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that \[\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).\] When does equality hold?
Problem
Source: JBMO 2012
Tags: inequalities, function, JBMO
27.06.2012 19:56
$\frac{b+c}{a}+2\ge2\sqrt{\frac{2(b+c)}{a}}=2\sqrt{2}\sqrt{\frac{1-a}{a}}$
27.06.2012 19:59
Let $t = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$ From the Cauchy-Schwarz inequality, we have \[\sqrt{2t} = \sqrt{2\cdot \sum_{cyc} \frac{1}{a}} \ge \sum_{cyc} \sqrt{\frac{1-a}{a}}.\] Notice that $6 + \sum_{sym} \frac{a}{b} = 3 + t$, so it remains to prove that $3 + t \ge 4\sqrt{t}$, which follows because $t \ge 9$ and \[ 9 + t - 6 \ge 6\sqrt{t} - 6 \ge 4 \sqrt{t}.\]
27.06.2012 20:29
We have $\displaystyle \frac {a} {b} + \frac {b} {a} + \frac {b} {c} + \frac {c} {b} + \frac {c} {a} + \frac {a} {c} = \sum \frac {b+c} {a} = \sum \frac {1-a} {a}$, so \[\frac {a} {b} + \frac {b} {a} + \frac {b} {c} + \frac {c} {b} + \frac {c} {a} + \frac {a} {c} + 6 - 2\sqrt{2} (\sqrt{\frac {1-a} {a}} + \sqrt{\frac {1-b} {b}} + \sqrt{\frac {1-c} {c}} ) =\] \[{\sum ( \frac {1-a} {a}} - 2\sqrt{2}\sqrt{\frac {1-a} {a}} + 2 ) = \sum ( \sqrt{\frac {1-a} {a}} - \sqrt{2} )^2 \geq 0.\] Equality occurs when $\displaystyle \sqrt{\frac {1-a} {a}} = \sqrt{\frac {1-b} {b}} = \sqrt{\frac {1-c} {c}} = \sqrt{2}$, thus for $a=b=c=\dfrac {1} {3}$.
27.06.2012 21:00
Generalization a)Let $x,y,z\ge 0$ and $a,b,c,\alpha ,\beta ,\gamma $ be positive real numbers such that $a+b+c=1$. Prove that \[\beta \frac{a}{b+y}+\gamma \frac{a}{c+z}+\beta \frac{c}{b+y}+\alpha \frac{c}{a+x}+\gamma \frac{b}{c+z}+\alpha \frac{b}{a+x}+2\left( \frac{\alpha }{1+3x}+\frac{\beta }{1+3y}+\frac{\gamma }{1+3z} \right)\ge \] \[2\sqrt{2}\left( \sqrt{\frac{{{\alpha }^{2}}}{1+3x}\cdot \frac{1-a}{x+a}}+\sqrt{\frac{{{\beta }^{2}}}{1+3y}\cdot \frac{1-b}{y+b}}+\sqrt{\frac{{{\gamma }^{2}}}{1+3z}\cdot \frac{1-c}{z+c}} \right).\] When does equality hold? b)Let and $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that \[\frac{a}{b+1}+\frac{a}{c+1}+\frac{c}{b+1}+\frac{c}{a+1}+\frac{b}{c+1}+\frac{b}{a+1}+\frac{3}{2}\ge \] \[\sqrt{2}\left( \sqrt{\frac{1-a}{1+a}}+\sqrt{\frac{1-b}{1+b}}+\sqrt{\frac{1-c}{1+c}} \right).\] When does equality hold?
28.06.2012 02:30
$y=\sqrt{x}\ (x>0)$ is an increasing and concave function, thus by Jensen's theorem, we have \[{\frac{\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}}{3}\leq \sqrt{\frac{\frac{1-a}{a}+\frac{1-b}{b}+\frac{1-c}{c}}{3}}}\] Since $0<a,\ b,\ c<1$, using the $A.M.-G.M.$ inequality, \[2\sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)\leq 2\sqrt{6}\sqrt{\frac{1-a}{a}+\frac{1-b}{b}+\frac{1-c}{c}}\leq 6+\frac{1-a}{a}+\frac{1-b}{b}+\frac{1-c}{c}=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+6.\] The equality holds when $\frac{1-a}{a}=\frac{1-b}{b}=\frac{1-c}{c}$ and $a+b+c=1\Longleftrightarrow a=b=c=\frac 13$, which satisfy $0<a,\ b,\ c<1.$
06.07.2012 11:17
Who knows the official results of this contest? Please post it or post jbmo 2012 official site
06.07.2012 11:32
There is this topic http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=485894&p=2732757#p2732757 which gave the link to the site in due time. For convenience, here it is http://www.hms.gr/16jbmo2012/main.htm.
25.03.2013 05:53
Let $x=\frac{a+b}{c}, y=\frac{b+c}{a}, z=\frac{c+a}{b}$, clearly all positive reals. Then, $(x+y+z-6)^2 \geq 0 \implies (x+y+z)^2-12(x+y+z)+36 \geq 0$ $\implies (x+y+z)^2+12(x+y+z)+36 \geq 24(x+y+z)$ $\implies (x+y+z+6)^2 \geq 24(x+y+z) = 8(x+y+z)(1+1+1) \geq 8(\sqrt{x}+\sqrt{y}+\sqrt{z})^2$ (Cauchy) $\implies x+y+z+6 \geq 2\sqrt{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})^2$ $\implies \frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+6 \geq 2\sqrt{2}(\frac{1-a}{a}+\frac{1-b}{b}+\frac{1-c}{c})$. Where the last step follows from $a+b+c=1$. Equality occurs when $\frac{x}{1}=\frac{y}{1}=\frac{z}{1} \implies x=y=z \implies a=b=c=\frac{1}{3}$.
05.02.2015 22:03
Using the $a+b+c=1$ constraint , the LHS rewrites as $ \sum {\frac{1-a}{a}} +6 $ And we have $\frac{1-a}{a}+2 \geq 2\sqrt{2}\sqrt{\frac{1-a}{a}}$ Do the same for others and sum up to the desired inequality.
07.06.2016 14:45
Solved with AM-GM
15.01.2017 05:06
using $a+b+c=1$ in LHS , the inequality is equivalent to $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} +3 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ). $ use Cauchy, $3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} -3) \geq \left(\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right )^2. $ so it remains to prove $(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} +3)^2 \geq 24 \left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c} -3\right )$ let $p=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ , we have $(p-9)^2 \geq 0 . $
27.04.2017 15:12
I used a combination of AM-GM and Cauchy
27.04.2017 15:12
I used a combination of AM-GM and Cauchy
10.10.2017 19:44
To be honest, I think the most simple solution is to go with a / b + c / b = ( a + c ) / b = ( 1 - b ) / b, 2 + ( 1 - b ) / b = > 2 * sqrt [ ( 1 - b ) / b ] (by AM-GM), and repeating the process for the other ones. No Cauchy and no Lemmas so it is very simple yet very quick solution, easy to explain to beginners like me
16.10.2018 12:12
guiguzi wrote: $\frac{b+c}{a}+2\ge2\sqrt{\frac{2(b+c)}{a}}=2\sqrt{2}\sqrt{\frac{1-a}{a}}$ Nice solution
14.03.2021 13:37
For storage. $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right )$$ $$\iff \left(\sum \frac{a+b}{c}\right) + 6 \ge 2\sqrt{2} \left( \sum \sqrt{\frac{1 - c}{c}} \right)$$ $$\iff \sum \left( \frac{a+b}{c} + 2\right) \ge \sum 2\sqrt{\frac{2(a+b)}{c}}$$ $$\iff \sum \left( \sqrt{\frac{a+b}{c}} - \sqrt{2}\right)^2 \ge 0$$Which is the trivial inequality. Equality holds when $\boxed{a = b = c = \frac 13}$
25.07.2021 19:42
28.07.2021 14:00
25.04.2022 15:03
Notice:\begin{align*} &\frac{1-x}{x}-2\sqrt{\frac{2(1-x)}{x}} \geq -2 \\& \iff \frac{1+x}{x}\geq \frac{2\sqrt{2(1-x)}}{\sqrt{x}} \\& \iff (3x-1)^2\geq 0.\end{align*}By applying this to the original inequality, the claim follows. Note that equality when $a=b=c=\frac{1}{3}.$
25.04.2022 16:29
emregirgin35 wrote: Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that \[\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).\]When does equality hold? $$\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+6\ge 2\sqrt2\left(\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\right)$$$$\iff$$$$\left(\sqrt{\frac{b+c}{a}}-\sqrt 2\right)^2+\left(\sqrt{\frac{c+a}{b}}-\sqrt 2\right)^2+\left(\sqrt{\frac{a+b}{c}}-\sqrt 2\right)^2\geq 0$$2019 Saudi Arabia Kosovo National MO here here
Attachments:

20.05.2022 09:17
probably overcomplicated... we need to prove $(3+(a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{b})^2 \ge 8(\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-b}{b}})^2$. Note that $(\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-b}{b}})^2 \le ((1-a)+(1-b)+(1-c))(\frac{1}{a} + \frac{1}{b} + \frac{1}{b})$ so we need to prove $(3+(\frac{1}{a} + \frac{1}{b} + \frac{1}{b}))^2 \ge 16(\frac{1}{a} + \frac{1}{b} + \frac{1}{b})$. Note that $(a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{b}) \ge (1+1+1)^2 \implies (\frac{1}{a} + \frac{1}{b} + \frac{1}{b}) \ge 9$ so Let $(\frac{1}{a} + \frac{1}{b} + \frac{1}{b}) = 9 + t$ now we need to prove $(12+t)^2 \ge 16(9+t)$ which is true and equality holds for $t = 0$.
21.05.2022 05:34
Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq\sqrt{6}\left (\sqrt{\frac{1-a^2}{a}} + \sqrt{\frac{1-b^2}{b}} + \sqrt{\frac{1-c^2}{c}}\right )$$
03.01.2023 21:59
$$\text{First part:}$$$$\sum{\frac {a+c}{b}}+6=\sum{\frac{1}{a}}+3$$$$\text{Second part:}$$$$\sum{\sqrt{\frac{6-6a^2}{a}}}$$$$\boxed{A.M-G.M}$$The right hand side $$\iff$$$$\sum{\frac{1}{2a}}+\frac{15}{2}$$And we get by some analysis $$\sum{\frac{1}{a}} \geq 9$$Which is true for $$\boxed{A.M-H.M}$$So we are done...
03.01.2023 22:00
sqing wrote: Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq\sqrt{6}\left (\sqrt{\frac{1-a^2}{a}} + \sqrt{\frac{1-b^2}{b}} + \sqrt{\frac{1-c^2}{c}}\right )$$ My sol))
10.12.2023 13:50
sqing wrote: Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq\sqrt{6}\left (\sqrt{\frac{1-a^2}{a}} + \sqrt{\frac{1-b^2}{b}} + \sqrt{\frac{1-c^2}{c}}\right )$$ By $AM-GM$, we have $$\frac{b+c}{a}+\frac{3}{2}(a+1) \ge 2\sqrt{\frac{3}{2} \cdot \frac{(a+1)(b+c)}{a}}$$$$\Rightarrow \frac{b+c}{a}+ \frac{3}{2}(a+1) \ge \sqrt{6} \sqrt{\frac{(a+1)(1-a)}{a}}= \sqrt{6} \sqrt{\frac{1-a^2}{a}}$$Summing it cyclically, we get the desired inequality.
04.10.2024 16:07
AM-GM and C-S gives the desired result.