Prove that the inequality \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9\left(ab+bc+ca\right)\]holds for all positive reals $a$, $b$, $c$.
Problem
Source: APMO 2004
Tags: inequalities, algebra, APMO
23.03.2004 21:43
Nice, interesting and beautiful. I will prove the stronger inequality: $(a^{2}+2)(b^{2}+2)(c^{2}+2) \geq 3(a+b+c)^{2}.$ I will use the fact that if x,y have the same sign, then (1+x)(1+y)>=1+x+y. Write the inequality as $\prod \left(\frac{a^{2}-1}3+1\right) \geq \frac{1}{9}(a+b+c)^{2}.$ If a,b,c>=1 then $\left(\frac{a^{2}-1}3+1\right) \geq 1+\sum \frac{a^{2}-1}3= \frac{1}{3}\sum a^{2}\geq \frac{1}{9}(a+b+c)^{2}.$ If two of them are at least 1, let them be a and b. Then the LHS is at least $( 1+\frac{1}{3}(a^{2}-1+b^{2}-1) ) (c^{2}+2)= \frac{1}{9}(a^{2}+b^{2}+1) (1^{2}+1^{2}+c^{2}) \geq (a+b+c)^{2}$ by Cauchy. If one of them is at least 1, let it be a, then we use the same argument as in the precedent case. If a,b,c<=1 then by Bernoully inequality we have $\prod \left(1+\frac{a^{2}-1}3\right) \geq 1+\sum \frac{a^{2}-1}3= \frac{1}{3}\sum a^{2}\geq \frac{1}{9}(a+b+c)^{2}.$
24.03.2004 21:01
There is a simple lower-power solution using strictly AM-GM: productcyc(a^2+2) =((abc)^2+1+1) + sumcyc(a^2) + 3sumcyc(a^2) + 2sumcyc((ab)^2+1)) >=3(abc)^2/3 + sumcyc(a^2) + 3sumcyc(ab) + 4sumcyc(ab) >=sumsym(a^4/3*b^2/3) + 7sumcyc(ab) (expanding the well known inequality xyz>=productcyc(x+y-z), where x=a^2/3, y=b^2/3, x=c^2/3) >=2sumcyc(ab)+7sumcyc(ab) =9sumcyc(ab), proving the required. Equality obviously holds iff a=b=c=1. Of course, even though it's simpler, Harazi's result is more elegant in another sense because it is stronger.
08.03.2005 00:04
Particular case of http://www.mathlinks.ro/Forum/viewtopic.php?t=19666 for k = 1. darij
08.03.2005 16:31
We have to prove that $\frac{ab+bc+ca}{(a^{2}+2)(b^{2}+2)(c^{2}+2)}\le \frac{1}{9}$ Now $x=\frac{1}{a^{2}+2},...$ Use AM-GM $2\frac{1}{(c^{2}+2)}\frac{a}{(a^{2}+2)}\frac{b}{(b^{2}+2)}\le\frac{1}{c^{2}+2}(\frac{a^{2}}{(a^{2}+2)^{2}}+\frac{b^{2}}{(b^{2}+2)^{2}})= z(x-2x^{2}+y-2y^{2})...$ And we prove $xy+yz+zx\le x^{2}y+y^{2}x+y^{2}z+z^{2}y+z^{2}x+x^{2}z+\frac{1}{9}$ But this is easy: By AM-GM we have $x^{2}y+xy^{2}+\frac{1}{27}\geq xy$, ...
14.04.2005 00:27
Does anyone have the *OFFICIAL* solutions to this question on the APMO? I remembere there were 2 nice solutions, one with vectors, one with trig.
07.01.2007 05:22
@Michael Lipnowski :please edit it i don't understand
29.01.2007 10:09
mathboy_cntHDVN wrote: @Michael Lipnowski :please edit it i don't understand $\prod_{cyc}(a^{2}+2) =((abc)^{2}+1+1)+\sum_{cyc}(a^{2})+3 \sum_{cyc}(a^{2})+2 \sum_{cyc}((ab)^{2}+1))$ $\geq 3(abc)^\frac{2}{3}+\sum_{cyc}(a^{2})+3 \sum_{cyc}(ab)+4 \sum_{cyc}(ab) \geq \sum_{sym}(a^\frac{4}{3}{b^\frac{2}{3})+7 \sum_{cyc}(ab)}$ (expanding the well known inequality $xyz\geq \prod_{cyc}(x+y-z)$, where $x=a^\frac{2}{3}, y=b^\frac{2}{3}, x=c^\frac{2}{3})$ $\geq 2 \sum_{cyc}(ab)+7 \sum_{cyc}(ab) =9 \sum_{cyc}(ab)$, proving the required. Equality obviously holds iff $a=b=c=1$. @mathboy_cntHDVN : This 's posts of Michael Lipnowski in latex
29.09.2007 18:10
My solution: Put $ t = \frac {b + c}{2}$ By AM-GM we have: $ (b^2 + 2)(c^2 + 2) \geq 3 + 2bc + 2(b^2 + c^2) \geq 3 + 6t^2$ and $ t^2 \geq bc$ We need prove that: $ (a^2 + 2)(3 + 6t^2) \geq 9(2at + t^2)$ <=>$ (a - t)^2 + 2(at - 1)^2 \geq 0$ This inequality is true Equality occurs when $ a = b = c = 1$
08.08.2009 15:40
Arne wrote: Prove that the inequality $ \left(a^{2} + 2\right)\left(b^{2} + 2\right)\left(c^{2} + 2\right) \geq 9\left(ab + bc + ca\right)$ holds for all positive reals $ a$, $ b$, $ c$. I will prove the stronger inequality: $ (a^2 + 2)(b^2 + 2)(c^2 + 2) \ge 3(a + b + c)^2$ I have: $ (a^2 + 2)(b^2 + 2) = (a^2 + 1)(b^2 + 1) + a^2 + b^2 + 3 \ge (a + b)^2 + \frac {1}{2}(a + b)^2 + 3$ $ = \frac {3}{2}[(a + b)^2 + 2]$ $ = > (a^2 + 2)(b^2 + 2)(c^2 + 2) \ge \frac {3}{2}[(a + b)^2 + 2](c^2 + 2) \ge \frac {3}{2}[ \sqrt {2}(a + b) + \sqrt {2}c]^2$ $ = 3(a + b + c)^2$ $ =>(a^2 + 2)(b^2 + 2)(c^2 + 2) \ge 3(a + b + c)^2 \ge 9(ab + bc + ca)$
11.04.2011 12:23
Can anyone please explain in more detail how Bernoulli's inequality is used in Harazi's solution? Thank you in advance!
16.04.2011 09:03
there was sdrfgdf
21.04.2011 01:45
We have $(\forall {a,b,c\in\mathbb{R}})(a^2+2)(b^2+2)(c^2+2)\ge{4(a^2+b^2+c^2)+5(ab+bc+ca)}.$ See: http://www.irgoc.org/viewtopic.php?f=10&t=926&p=8055&sid=8b67e9ff2c1d570b87e6702457829c68#p8055 http://www.irgoc.org/viewtopic.php?f=10&t=926&sid=5d489375ae9166d3d2fb7b5f3fe0763a&start=220
28.04.2011 12:19
Take $ x=a+b+c $ , $ y=ab+bc+ca $ , $ z=abc $. Then given inequality is equivalent to \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \] It is equivalent to \[ (z-\frac{x}{3})^{2}+\frac{8}{9}(y-3)^{2}+\frac{10}{9}(y^{2}-3xz)+\frac{35}{9}(x^{2}-3y)\geq 0 \] It is easy to prove \[ y^{2}-3xz\geq 0 \] and \[ x^{2}-3y\geq 0 \] I took it from official solutions. There were another two solutions. One of them is by Jensen , other is by vectoral product of vectors.
28.04.2011 13:38
mudok wrote: Take $ x=a+b+c $ , $ y=ab+bc+ca $ , $ z=abc $. Then given inequality is equivalent to \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \] It is equivalent to \[ (z-\frac{x}{3})^{2}+\frac{8}{9}(y-3)^{2}+\frac{10}{9}(y^{2}-3xz)+\frac{35}{9}(x^{2}-3y)\geq 0 \] May anyone explain to me how would one think of grouping the addends like that? I mean, there is no formula nor anything obvious in this particular grouping right? So how can you master the craft of grouping, even if it works only in some cases? And, what "shows" you how to group the elements in this problem? Thank you in advance!
28.04.2011 14:44
I didn't solve it.I said that I took it from official solutin. That's why I don't know the way of finding this solution. But to get \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \] open parantheses the given given inequality and substitute \[ (ab)^{2}+(bc)^{2}+(ca)^{2}=y^{2}-2xz \] \[ a^{2}+b^{2}+c^{2}=x^{2}-2y \] \[ (abc)^{2}=z^{2} \]
28.04.2011 14:54
mudok wrote: I didn't solve it.I said that I took it from official solutin. That's why I don't know the way of finding this solution. But to get \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \] open parantheses the given given inequality and substitute \[ (ab)^{2}+(bc)^{2}+(ca)^{2}=y^{2}-2xz \] \[ a^{2}+b^{2}+c^{2}=x^{2}-2y \] \[ (abc)^{2}=z^{2} \] I understand very well how \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \]was obtained, but thank you for the explanation. I also didn't expect you to know how the groupings were made, but just hoped that someone might understand the reasoning behind this solution and be kind enough to explain.
28.04.2011 20:58
StefanS: I understand very well how \[ z^{2}+2y^{2}-4xz+4x^{2}-17y+8\geq 0 \]was obtained, but thank you for the explanation. I also didn't expect you to know how the groupings were made, but just hoped that someone might understand the reasoning behind this solution and be kind enough to explain.[/quote] To StefanS: 1)Not at all. 2)My english is bad.Sorry.
22.06.2011 08:16
Arne wrote: Prove that the inequality $\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9\left(ab+bc+ca\right)$ holds for all positive reals $a$, $b$, $c$. Inequality stronger is true \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 3\left(a+b+c\right)^2+(abc-1)^2\]
24.06.2011 13:17
Nguyenhuyen_AG wrote: Inequality stronger is true \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 3\left(a+b+c\right)^2+(abc-1)^2\] Beacause $ \iff \frac{2}{3}(ab+bc+ac-3)^2+\left[ a^2+b^2+c^2+2abc+1-2(ab+bc+ac) \right]+ \left( \frac{4}{3}(ab+bc+ac)^2-4abc(a+b+c) \right) \geq 0$
27.05.2022 16:05
Arne wrote: Prove that the inequality \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9\left(ab+bc+ca\right)\]holds for all positive reals $a$, $b$, $c$. WLOG $(a^2-1)(b^2-1)\geq 0, $ then $$(a^2+2)(b^2+2)(c^2+2)\ge3(a^2+b^2+1)(1+1+c^2)\ge3(a+b+c)^2\ge9(ab+bc+ca)$$
27.05.2022 18:16
sqing wrote: Arne wrote: Prove that the inequality \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9\left(ab+bc+ca\right)\]holds for all positive reals $a$, $b$, $c$. WLOG $(a^2-1)(b^2-1)\geq 0, $ then $$(a^2+2)(b^2+2)(c^2+2)\ge3(a^2+b^2+1)(1+1+c^2)\ge3(a+b+c)^2\ge9(ab+bc+ca)$$ Very nice way of proving it. Congratulations on finding it!
28.05.2022 03:08
Let $a, b, c$ be positive reals. Prove that $$\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 4\left(a^2+bc+ca\right)$$$$\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 4\left(a^2+bc+c^2\right)$$
16.02.2023 01:01
$8<9$ We first e x p a n d which yields the equivalent inequality $$a^2b^2c^2+2\sum_{\mathrm{cyc}} a^2a^2+4\sum_{\mathrm{cyc}} a^2-9\sum_{\mathrm{cyc}}ab+8=a^2b^2c^2+2\sum_{\mathrm{cyc}} (ab-1)^2+4\sum_{\mathrm{cyc}} a^2-5\sum_{\mathrm{cyc}} ab+2\geq 0.$$Motivated by the $a=b=c=1$ equality case we discard the $(ab-1)^2$ terms, so it remains to prove that $$4\sum_{\mathrm{cyc}} a^2+a^2b^2c^2+2\geq 5\sum_{\mathrm{cyc}}ab \impliedby \sum_{\mathrm{cyc}} a^2+3a^{\frac{2}{3}}b^{\frac{2}{3}}c^{\frac{2}{3}}\geq 2\sum_{\mathrm{cyc}} ab$$by AM-GM. By Schur on $a^{\frac{2}{3}}$, etc., we have $$\sum_{\mathrm{cyc}} a^2+3a^{\frac{2}{3}}b^{\frac{2}{3}}c^{\frac{2}{3}}\geq \sum_{\mathrm{sym}} a^{\frac{4}{2}}b^{\frac{2}{3}},$$from which the conclusion is clear by AM-GM. $\blacksquare$ Here is an alternate finish from the second-to-last centered inequality. The inequality there is homogeneous and symmetrical, so WLOG suppose that $a\geq b \geq c$ and $ab=1$. We will prove that the inequality is strongest when $a=b=1$. The inequality in this case is equivalent to $$\left(a+\frac{1}{a}\right)^2-2c\left(a+\frac{1}{a}\right)+c^2+3c^{\frac{2}{3}}-4\geq 0.$$Viewing the LHS as a quadratic in $a+\tfrac{1}{a}$, its minimum occurs when $a+\tfrac{1}{a}=c$ and is decreasing on $[c,\infty)$ and thus on $[2,\infty)$ since $a\geq b\geq c$. This proves the desired claim, since $a+\tfrac{1}{a} \implies a=1$. The inequality then reduces to $c^2-4c+3c^{\frac{2}{3}}\geq 0$, which is just AM-GM on $c^2$ and three copies of $c^{\frac{2}{3}}$. $\blacksquare$
04.09.2023 02:55
Arne wrote: Prove that the inequality \[\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq 9\left(ab+bc+ca\right)\]holds for all positive reals $a$, $b$, $c$. 2023 Shandong High School Mathematics Competition Q13
05.10.2023 21:22
Solution is attached. Although a bit lengthy, I found this solution to be very natural.
Attachments:


22.10.2023 21:00
Version 1- 4_Variables Let $a,b,c,d$ be positive reals. Then prove that $$(a^2+2)(b^2+2)(c^2+2)(d^2+2)\geq \dfrac{9(a+b+c+d)^2}{2}\geq 18(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{4}+a_{4}a_{1})$$
22.10.2023 21:03
Version 2- 4_Variables Let $a,b,c,d,f$ be positive reals. Then prove that $$(a^2+2)(b^2+2)(c^2+2)(d^2+2)(f^2+2)\geq \dfrac{27(a+b+c+d+f)^2}{4}$$
22.10.2023 21:05
Gen1 was here
05.11.2023 10:13
These generalizations are proving the stronger one.
05.11.2023 10:14
Gen2 was here
12.02.2024 04:17
Nice. Upon expanding the left side and using the inequalities $a^2b^2+1\ge 2ab,a^2b^2c^2+2\ge3\sqrt[3]{a^2b^2c^2}$ from AM-GM we want to prove $4(a^2+b^2+c^2)+3\sqrt[3]{a^2b^2c^2}-5(ab+bc+ca)\ge 0.$ This follows from \begin{align*}&\frac32\left((a-b)^2+(b-c)^2+(c-a)^2\right)+\left((\sqrt[3]a-\sqrt[3]b)^2\sqrt[3]{a^2b^2}+(\sqrt[3]b-\sqrt[3]c)^2\sqrt[3]{b^2c^2}+(\sqrt[3]c-\sqrt[3]a)^2\sqrt[3]{c^2a^2}\right)\\ &+\sqrt[3]{a^2}(\sqrt[3]{a^2}-\sqrt[3]{b^2})(\sqrt[3]{a^2}-\sqrt[3]{b^2})+\sqrt[3]{b^2}(\sqrt[3]{b^2}-\sqrt[3]{a^2})(\sqrt[3]{b^2}-\sqrt[3]{c^2})+\sqrt[3]{c^2}(\sqrt[3]{c^2}-\sqrt[3]{a^2})(\sqrt[3]{c^2}-\sqrt[3]{b^2})\\ &\ge 0.\end{align*}The last part is by Schur. Equality holds at $a=b=c=1.$
12.02.2024 04:40
Another solution. Again expand but notice $a^2b^2c^2+\frac13(a^2+b^2+c^2)+2\ge\frac23(a^2bc+b^2ca+c^2ab)+2\ge\frac43(a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab})$ and combined with $a^2b^2+1\ge 2ab$ we want to show $4(a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab})+11(a^2+b^2+c^2)-15(ab+bc+ca)\ge 0.$ This follows from \begin{align*}&\frac72\left((a-b)^2+(b-c)^2+(c-a)^2\right)+4(\sqrt{ab}(\sqrt a-\sqrt b)^2+\sqrt{bc}(\sqrt b-\sqrt c)^2+\sqrt{ca}(\sqrt c-\sqrt a)^2)\\&+4\left(a(\sqrt a-\sqrt b)(\sqrt a-\sqrt c)+b(\sqrt b-\sqrt a)(\sqrt b-\sqrt c)+c(\sqrt c-\sqrt a)(\sqrt c-\sqrt b)\right)\\&\ge 0.\end{align*}The last part again by Schur.
27.04.2024 09:17
Inspired by the equality case $a=b=c=1$, we first notice \[(a^2+2)(b^2+2) = (a^2+1)(b^2+1) + (a^2+b^2) + 3 \ge \frac 32 (a+b)^2+3,\] so our lower bound for the LHS is \begin{align*} \frac 32 \left((a+b)^2+2\right)(c^2+1) &= \frac 32 \left((ac+bc)^2+4+2\left((a+b)^2+c^2\right)\right) \\ &\ge \frac 32 \left(4c(a+b)+2c^2+2(a+b)^2\right) \\ &= 3(a+b+c)^2 \ge 9(ab+bc+ca). \quad \blacksquare \end{align*}
22.08.2024 15:54
Let $a, b, c\geq 0$ and fix $a+b+c=t$. We claim that it suffices to prove the inequality when two of $a,b,c$ are equal. Define $f,g$ over $[0,t]^3$ by $$f(a,b,c,d)=(a^2+2)(b^2+2)(c^2+2)-9(ab+bc+ca)$$and $g(a,b,c)=a+b+c$. Since the set $\{(a,b,c)\in [0,t]^3:g(a,b,c)=t\}$ is compact, $f$ achieves a minimum value in this set. If that minimum is achieved at the endpoints, then our claim clearly follows. Otherwise suppose the minimum is attained at the points $a,b,c\in (0,t)$ then by Lagrange Multipliers, $$\nabla f=\lambda \nabla g \Rightarrow \begin{cases} 2(a+1)(b^2+2)(c^2+2)-9(b+c)=\lambda \\ 2(b+1)(c^2+2)(a^2+2)-9(c+a)=\lambda \\ 2(c+1)(a^2+2)(b^2+2)-9(a+b)=\lambda \end{cases}.$$Now, suppose $a,b,c$ are pairwise distinct. Subtracting the second equation from the first and dividing both sides by $b-a$ we get $$2(c^2+2)(ab+a+b-2)=9$$and we get two other similar equations too. Let $\alpha=abc, \beta=ab+bc+ca, \gamma=a+b+c$. We can check that $$0=(a^2+2)(bc+b+c-2)-9/2=a(\alpha+\beta-2\gamma-2)-\alpha+2\beta+2\gamma-9/2-4 \qquad (1)$$Since the same holds with $a$ replaced by $b$ in $(1)$, it follows that the coefficient of $a$ in $(1)$ must be zero since $a\neq b$. Thus we get, $$\alpha+\beta-2\gamma-2=0, -\alpha+2\beta+2\gamma-9/2-4=0.$$So $\beta=7/2$ and $\alpha=2\gamma-3/2$. Now, \begin{align*} & (c^2+2)(ab+a+b-2)=\frac 92 \\ \Rightarrow & (c^2+2)(ab+\gamma-c-2)=\frac 92 \\ \Rightarrow & -c^3+c^2(\gamma-2)+c(abc-2)+2\gamma+2ab=4+\frac 92\\ \Rightarrow & -c^3+c^2(\gamma-2)+c(2\gamma-3/2-2)+2\gamma+2ab=4+\frac 92.\end{align*}So by symmetry we get $$-(a^3+b^3+c^3)+(a^2+b^2+c^2)(\gamma-2)+(a+b+c)(2\gamma-3/2-2)+6\gamma+2(ab+bc+ca)=3\left (4+\frac 92\right).$$Putting everything above in terms of $\alpha,\beta,\gamma$ allows us to solve for $\gamma$. We get, if my calculations are right, $\gamma=0$. But this is clearly a contradiction since $a,b,c>0$. And so our claim follows. \ So it remains to prove the inequality when two variables are equal. Indeed note that $$(x^2+2)^2(y^2+2)-9(x^2+2yx)=\frac{1}{(x^2+2)^2} \left ((y(x^2+2)^2-9x)^2+(x^2-1)^2 (2x^4+11x^2+32)\right)\geq 0.$$