Problem

Source: Romanian IMO Team Selection Test TST 1999, problem 15; 15-th Iranian Mathematical Olympiad 1997/1998

Tags: floor function, ceiling function, quadratics, probability, expected value, combinatorics unsolved, combinatorics



Let $X$ be a set with $n$ elements, and let $A_{1}$, $A_{2}$, ..., $A_{m}$ be subsets of $X$ such that: 1) $|A_{i}|=3$ for every $i\in\left\{1,2,...,m\right\}$; 2) $|A_{i}\cap A_{j}|\leq 1$ for all $i,j\in\left\{1,2,...,m\right\}$ such that $i \neq j$. Prove that there exists a subset $A$ of $X$ such that $A$ has at least $\left[\sqrt{2n}\right]$ elements, and for every $i\in\left\{1,2,...,m\right\}$, the set $A$ does not contain $A_{i}$. Alternative formulation. Let $X$ be a finite set with $n$ elements and $A_{1},A_{2},\ldots, A_{m}$ be three-elements subsets of $X$, such that $|A_{i}\cap A_{j}|\leq 1$, for every $i\neq j$. Prove that there exists $A\subseteq X$ with $|A|\geq \lfloor \sqrt{2n}\rfloor$, such that none of $A_{i}$'s is a subset of $A$.