Problem

Source: CWMO 2011 Q4

Tags: geometry, geometric transformation, homothety, angle bisector, geometry unsolved



In a circle $\Gamma_{1}$, centered at $O$, $AB$ and $CD$ are two unequal in length chords intersecting at $E$ inside $\Gamma_{1}$. A circle $\Gamma_{2}$, centered at $I$ is tangent to $\Gamma_{1}$ internally at $F$, and also tangent to $AB$ at $G$ and $CD$ at $H$. A line $l$ through $O$ intersects $AB$ and $CD$ at $P$ and $Q$ respectively such that $EP = EQ$. The line $EF$ intersects $l$ at $M$. Prove that the line through $M$ parallel to $AB$ is tangent to $\Gamma_{1}$