Given a non-zero integer $y$ and a positive integer $n$. If $x_1, x_2, \ldots, x_n \in \mathbb{Z} - \{0, 1\}$ and $z \in \mathbb{Z}^+$ satisfy $(x_1x_2 \ldots x_n)^2y \le 2^{2(n+1)}$ and $x_1x_2 \ldots x_ny = z + 1$, prove that there is a prime among $x_1, x_2, \ldots, x_n, z$. It appears that the problem statement is incorrect; suppose $y = 5, n = 2$, then $x_1 = x_2 = -1$ and $z = 4$. They all satisfy the problem's conditions, but none of $x_1, x_2, z$ is a prime. What should the problem be, or did I misinterpret the problem badly?
Problem
Source: 2012 Indonesia Round 2.5 TST 3 Problem 4
Tags: number theory unsolved, number theory