Let $m$ and $n$ be two positive integers greater than $1$. Prove that there are $m$ positive integers $N_1$ , $\ldots$ , $N_m$ (some of them may be equal) such that \[\sqrt{m}=\sum_{i=1}^m{(\sqrt{N_i}-\sqrt{N_i-1})^{\frac{1}{n}}.}\]
Source: Romania TST 3 2012, Problem 1
Tags: USAMTS, algebra proposed, algebra
Let $m$ and $n$ be two positive integers greater than $1$. Prove that there are $m$ positive integers $N_1$ , $\ldots$ , $N_m$ (some of them may be equal) such that \[\sqrt{m}=\sum_{i=1}^m{(\sqrt{N_i}-\sqrt{N_i-1})^{\frac{1}{n}}.}\]