Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that: For all $a$ and $b$ in $\mathbb{Z} - \{0\}$, $f(ab) \geq f(a) + f(b)$. Show that for all $a \in \mathbb{Z} - \{0\}$ we have $f(a^n) = nf(a)$ for all $n \in \mathbb{N}$ if and only if $f(a^2) = 2f(a)$
Problem
Source: Pan African Maths Olympiad
Tags: function, induction
11.08.2005 21:07
One side of the implication is obvious (put n=2). Suppose $f(a^2) = 2f(a)$. Notice that if $f(a^{2^k}) = 2^kf(a)$, it implies $f(a^{2^{k+1}}) = 2f(a^{2^k}) = 2^{k+1}f(a)$, basically the induction step that will show $f(a^{2^k}) = 2^kf(a)$ for naturals k. (*) Also, notice $f(a^n) \geq nf(a)$ by $f(a^2 * a^{n-2}) \ge 2f(a) + f(a^{n-2})$ (very obvious). Less obvious is that $2^k f(a) = f(a^{2^k}) \ge f(a^{2^k - 1}) + f(a)$ so that if $f(a^k) = kf(a)$ for k, then also for all naturals $j \le k$. But from (*) k can be arbitrarily large.
09.10.2005 05:42
Singular wrote: Notice that if $f(a^{2^k}) = 2^kf(a)$, it implies $f(a^{2^{k+1}}) = 2f(a^{2^k}) = 2^{k+1}f(a)$ Why?
10.10.2005 13:23
I think it doesn't necessarily imply that..
10.10.2005 13:35
if $f(a^{2^k})=2^kf(a)$ then $f(a^{2^{k+1}})=f(\left(a^{2^k}\right)^2)=2\cdot f(a^{2^k})=2^{k+1}f(a)$ i dont see the problem, but singular didnt prove both ways only one ...
10.10.2005 13:36
Singular wrote: One side of the implication is obvious (put n=2). sorry singular i overread this
11.10.2005 06:51
peeta wrote: if $f(a^{2^k})=2^kf(a)$ then $f(a^{2^{k+1}})=f(\left(a^{2^k}\right)^2)=2\cdot f(a^{2^k})=2^{k+1}f(a)$ i dont see the problem, but singular didnt prove both ways only one ... Did I misunderstand the question? I think $f(x^2) = 2f(x)$ works only for $x=a$, not $x = a^{2^k}$
11.10.2005 11:57
it works for any $a\in\mathbb Z \backslash {0}$
11.10.2005 12:29
OK. I thought it mean if we pick $a$ and $f(a^2) = 2f(a)$ then $f(a^n) = nf(a)$