Let $ P(X) = a_{n}X^{n} + a_{n - 1}X^{n - 1} + \ldots + a_{1}X + a_{0}$ be a real polynomial of degree $ n$. Suppose $ n$ is an even number and: a) $ a_{0} > 0$, $ a_{n} > 0$; b) $ a_{1}^{2} + a_{2}^{2} + \ldots + a_{n - 1}^{2}\leq\frac {4\min(a_{0}^{2} , a_{n}^{2})}{n - 1}$. Prove that $ P(x)\geq 0$ for all real values $ x$. Laurentiu Panaitopol
Problem
Source: L. Panaitopol, Romania, TST 1987
Tags: algebra, polynomial, inequalities, vector, inequalities proposed
16.04.2008 22:19
The second property should be: b) $ a_{1}^{2}+a_{2}^{2}+...+a_{n-1}^{2}\leq\frac{4\cdot min (a_{0}^{2},a_{n}^{2})}{n-1}$ (otherwise there's no meaning to the min)
16.04.2008 22:38
I've corrected it.
16.04.2008 23:35
this one already was posted here : http://www.mathlinks.ro/viewtopic.php?t=133243 question was: for which $ a_{i}$ next inequality holds: $ \sum_{i = 0}^{n}a_{i}x^{i} \geq 0$ for all $ x$
21.08.2009 18:10
Please help me with this problem,I did not find any hints from the posts above.Thanks.
01.02.2014 13:10
Sorry to revive this one.But pretty interesting problem.Hope my solution is correct. The second condition tells us to apply Cauchy-Schwartz.And so do we. $|a_{n-1}x^{n-1}+...+a_1x|\le \sqrt{a_{n-1}^2+...+a_1}\cdot \sqrt{x^{2n-2}+...+x^2}....(*)$.Now see that $P(x)=a_nx^n+a_0+(a_{n-1}x^{n-1}+...+a_1x)\ge \text{min}(a_0,a_n)(x^n+1)-|a_{n-1}x^{n-1}+...+a_1x|\ge \text{min}(a_0,a_n)(x^n+1)-\sqrt{a_{n-1}^2+...+a_1}\cdot \sqrt{x^{2n-2}+...+x^2}\ge \text{min}(a_0,a_n)\left(x^n+1-\frac{2\sqrt{x^{2n-2}+...+x^2}}{\sqrt{n-1}}\right)$. Here we used $(*)$ and the second condition.Now we will show that $(n-1)(x^n+1)^2\ge 4\sum_{i=1}^{n-1}x^{2i}$ we can put $n=2m$ and rewrite the equivalent inequality using $x^2=t$. $(2m-1)(t^{2m}+2t^m+1)\ge 4\sum_{i=1}^{2m-1}t^i$ which follows easily from Karamata .Since $f(u)=t^u$ is convex and the vectors ${a}=(2m-1,2m-1,2m-1,2m-1,2m-2,2m-2,2m-2,2m-2,....,1,1,1,1)$ where each of $2m-1,2m-2,....,1$ occurs $4$ times and ${b}=(2m,2m,....,2m,m,m,...,m,0,0,...,0)$ where each of $2m,m,0$ occur $2m-1,4m-2,2m-1$ times respectively; among ${a}$ and ${b}$ see that $b \succ a$ now Karamata gives us exactly the inequality we are asking for.