Determine the maximum value of $\lambda$ such that if $f(x) = x^3 +ax^2 +bx+c$ is a cubic polynomial with all its roots nonnegative, then \[f(x)\geq\lambda(x -a)^3\] for all $x\geq0$. Find the equality condition.
Source: Chinese MO 1999
Tags: algebra, polynomial, inequalities proposed, inequalities
Determine the maximum value of $\lambda$ such that if $f(x) = x^3 +ax^2 +bx+c$ is a cubic polynomial with all its roots nonnegative, then \[f(x)\geq\lambda(x -a)^3\] for all $x\geq0$. Find the equality condition.