Problem

Source:

Tags: modular arithmetic, number theory unsolved, number theory



Let $(a_n )_{n\ge 1}$ be a sequence of integers that satisfies \[a_n = a_{n-1} -\text{min}(a_{n-2} , a_{n-3} )\] for all $n \ge 4$. Prove that for every positive integer $k$, there is an $n$ such that $a_n$ is divisible by $3^k$ .