Problem

Source:

Tags: algebra, polynomial, inequalities, algebra unsolved



Define a sequence {$a_n$}$^{\infty}_{n=1}$ by $a_1 = 4, a_2 = a_3 = (a^2 - 2)^2$ and $a_n = a_{n-1}.a_{n-2} - 2(a_{n-1} + a_{n-2}) - a_{n-3} + 8, n \ge 4$, where $a > 2$ is a natural number. Prove that for all $n$ the number $2 + \sqrt{a_n}$ is a perfect square.