Problem

Source: Turkey TST 1997 Problem 5

Tags: modular arithmetic, abstract algebra, number theory proposed, number theory



Show that for each prime $p \geq 7$, there exist a positive integer $n$ and integers $x_{i}$, $y_{i}$ $(i = 1, . . . , n)$, not divisible by $p$, such that $x_{i}^{2}+ y_{i}^{2}\equiv x_{i+1}^{2}\pmod{p}$ where $x_{n+1} = x_{1}$