Problem

Source: tuymaada 2004

Tags: number theory, least common multiple, number theory proposed



It is known that $m$ and $n$ are positive integers, $m > n^{n-1}$, and all the numbers $m+1$, $m+2$, \dots, $m+n$ are composite. Prove that there exist such different primes $p_1$, $p_2$, \dots, $p_n$ that $p_k$ divides $m+k$ for $k = 1$, 2, \dots, $n$. Proposed by C. A. Grimm