Problem

Source: Czech-Polish-Slovak Match, 2009

Tags: induction, algebra unsolved, algebra



For positive integers $a$ and $k$, define the sequence $a_1,a_2,\ldots$ by \[a_1=a,\qquad\text{and}\qquad a_{n+1}=a_n+k\cdot\varrho(a_n)\qquad\text{for } n=1,2,\ldots\] where $\varrho(m)$ denotes the product of the decimal digits of $m$ (for example, $\varrho(413)=12$ and $\varrho(308)=0$). Prove that there are positive integers $a$ and $k$ for which the sequence $a_1,a_2,\ldots$ contains exactly $2009$ different numbers.