Problem

Source: China TST 2011 - Quiz 3 - D2 - P3

Tags: analytic geometry, graphing lines, slope, geometry, parallelogram, combinatorics unsolved, combinatorics



Let $m$ and $n$ be positive integers. A sequence of points $(A_0,A_1,\ldots,A_n)$ on the Cartesian plane is called interesting if $A_i$ are all lattice points, the slopes of $OA_0,OA_1,\cdots,OA_n$ are strictly increasing ($O$ is the origin) and the area of triangle $OA_iA_{i+1}$ is equal to $\frac{1}{2}$ for $i=0,1,\ldots,n-1$. Let $(B_0,B_1,\cdots,B_n)$ be a sequence of points. We may insert a point $B$ between $B_i$ and $B_{i+1}$ if $\overrightarrow{OB}=\overrightarrow{OB_i}+\overrightarrow{OB_{i+1}}$, and the resulting sequence $(B_0,B_1,\ldots,B_i,B,B_{i+1},\ldots,B_n)$ is called an extension of the original sequence. Given two interesting sequences $(C_0,C_1,\ldots,C_n)$ and $(D_0,D_1,\ldots,D_m)$, prove that if $C_0=D_0$ and $C_n=D_m$, then we may perform finitely many extensions on each sequence until the resulting two sequences become identical.