Problem

Source: Iran TST 2011 - Day 1 - Problem 3

Tags: combinatorics unsolved, combinatorics



There are $n$ points on a circle ($n>1$). Define an "interval" as an arc of a circle such that it's start and finish are from those points. Consider a family of intervals $F$ such that for every element of $F$ like $A$ there is almost one other element of $F$ like $B$ such that $A \subseteq B$ (in this case we call $A$ is sub-interval of $B$). We call an interval maximal if it is not a sub-interval of any other interval. If $m$ is the number of maximal elements of $F$ and $a$ is number of non-maximal elements of $F,$ prove that $n\geq m+\frac a2.$