Problem

Source: Iran Third Round 1996, E2, P4

Tags: number theory, prime numbers, number theory proposed, combinatorics



Let $n$ be a positive integer and suppose that $\phi(n)=\frac{n}{k}$, where $k$ is the greatest perfect square such that $k \mid n$. Let $a_1,a_2,\ldots,a_n$ be $n$ positive integers such that $a_i=p_1^{a_1i} \cdot p_2^{a_2i} \cdots p_n^{a_ni}$, where $p_i$ are prime numbers and $a_{ji}$ are non-negative integers, $1 \leq i \leq n, 1 \leq j \leq n$. We know that $p_i\mid \phi(a_i)$, and if $p_i\mid \phi(a_j)$, then $p_j\mid \phi(a_i)$. Prove that there exist integers $k_1,k_2,\ldots,k_m$ with $1 \leq k_1 \leq k_2 \leq \cdots \leq k_m \leq n$ such that \[\phi(a_{k_{1}} \cdot a_{k_{2}} \cdots a_{k_{m}})=p_1 \cdot p_2 \cdots p_n.\]