In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. Proposed by Marko Djikic
Problem
Source: Serbia NMO 2010 problem 2
Tags: geometry, circumcircle, ratio, geometric transformation, reflection, geometry unsolved
11.03.2011 17:58
Inversion with center $A$ and power $\overline{AH} \cdot \overline{AD}$ takes $\odot(AEF)$ into the sideline $BC$ and $\odot(BHC)$ into the 9-point circle $\odot(DEF)$ $\Longrightarrow$ $M$ is the inverse of the second intersection of $\odot(AEF)$ and $\odot(BHC),$ i.e. $N \in \odot(AEF)$ $\Longrightarrow$ $\angle HNA$ is right. From the harmonic cross ratio $(G,D,H,A),$ it follows that $NA,NH$ bisect $\angle DNG$ externally and internally $\Longrightarrow$ $\odot(AEF)$ is N-Apollonius circle of $\triangle GND$ $\Longrightarrow$ $\odot(AEF) \perp \odot(GND).$ Hence, $\angle GNS=\angle HDN=\angle HMA.$
11.03.2011 19:44
Denote $L\in EF\cap BC$ . From an well-known property obtain that $LH\perp AM$ . Denote $N'\in LH\cap AM$ . Therefore, $AF\cdot AB=AH\cdot AD=AN'\cdot AM\implies $ $AF\cdot AB=AN'\cdot AM\implies BFN'M$ is cyclically $\implies m\left(\widehat{BN'M}\right)=$ $m\left(\widehat{BFM}\right)=B$ . Also, $AE\cdot AC=AH\cdot AD=AN'\cdot AM\implies $ $AE\cdot AC=AN'\cdot AM\implies CEN'M$ is cyclically $\implies m\left(\widehat{CN'M}\right)=$ $m\left(\widehat{CEM}\right)=C$ . Therefore, $m\left(\widehat{BN'C}\right)=$ $m\left(\widehat{BN'M}\right)+m\left(\widehat{CN'M}\right)=$ $B+C=180^{\circ}-A$ $\implies$ $BHN'C$ is cyclically $\implies $ $N'\equiv N$ . Since the division $(A,G,H,D)$ is harmonically and $NH\perp NA$ obtain that $\widehat{HNG}\equiv$ $\widehat{HND}$ . Since the quadrilateral $DHNM$ is cyclically obtain that $\widehat{HND}\equiv \widehat{HMD}$ . Thus, $\widehat{HNG}\equiv\widehat{HMD}$ . In conclusion, $m\left(\widehat{HMA}\right) =$ $90^{\circ}-m\left(\widehat{DAM}\right)-$ $m\left(\widehat{DMH}\right)=$ $90^{\circ}-m\left(\widehat{ANS}\right)-$ $m\left(\widehat{HND}\right)=$ $90^{\circ}-m\left(\widehat{ANS}\right)-$ $m\left(\widehat{HNG}\right)=$ $m\left(\widehat{GNS}\right)$ $\implies$ $\widehat{HMA}\equiv $ $\widehat{GNS}$ . Nice problem ! Thank you. See the problem PP6 from here.
12.03.2011 05:07
$\square BCEF$ is cyclic. $M$ is the orthocenter of $\triangle AHK$ (Brocard). $HK\cap AM=N$ Since ($K$,$D/C$,$B$)$=-1$ and $\square NMDH$ is cyclic , $KH.KN=KD.KM=KC.KB$ Then $\square BCHN$ is cyclic. $N$ is that of the problem. $\angle GNH=\angle HND$ since ($D$,$G/H$,$A$)$=-1$ and $\angle HNA=\pi$/2 Since $SN=SH$, $\angle SNH=\angle SHN$ . $\angle SNH=\angle SNG+\angle GNH$ and $\angle SHN=\angle HND+\angle HDN=\angle HND+\angle HMA$ . Thus, $\angle SNG=\angle HMA$
Attachments:
06.11.2011 07:09
let $A'$ be the reflection of A in respect of M. then B,H,C,A' cyclic and HA' is the diameter. hence $\angle HNM=90$,obtaining B,H,N,C;F,H,N,E cyclic. hence FE,HN,BC concurrent(at T). and $\angle HNS=90-\angle SNA=90-\angle SAN=\angle AMD$ so it siffices to prove $\angle GNH=\angle HMB$. let Q be midpoint of EF by MF=ME,we get $\angle MQG=90$ yielding G,D,M,Q cyclic then$TG*TQ=TD*TM=TH*TM$ G,Q,N,H cyclic hence $\angle GNH=\angle HQF=\angle HMB$ QED
02.07.2014 22:14
Anyone give reason for $ \angle HQF = \angle HMB $ ????
04.07.2014 09:42
any help for little tush solution???????
23.12.2017 22:25
N is a point on the median AM whoch (BC/2)^2=MN.MA which implies that HN is perpendicular to AM ( not hard to prove) . then HNMD is inscribed quad. so HMA is HDN . so all we have to prove is that SN^2=SG.SD and since G and D are inverses about circle EFH and N is on the very circle the angle equality is an instant resolve. done
31.03.2019 14:53
19.12.2020 17:32
Dear Mathlinkers, the kern of this problem is to prove that NS is tangent to circumcircle of the triangle GND which is orthogonal to the circle with diameter AH (Apollonius circle)...and we finsh with a small angle chasing... Sincerely Jean-Louis
20.12.2020 14:37
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -18.910594552715125, xmax = 22.826615668950918, ymin = -16.282277070149565, ymax = 9.796659512799902; /* image dimensions */ pen zzttqq = rgb(0.6,0.2,0); draw((1,6)--(-5,-1)--(6,-5)--cycle, linewidth(0.4) + zzttqq); /* draw figures */ draw((1,6)--(-5,-1), linewidth(0.4) + zzttqq); draw((-5,-1)--(6,-5), linewidth(0.4) + zzttqq); draw((6,-5)--(1,6), linewidth(0.4) + zzttqq); draw(circle((1.4306930693069306,-0.4405940594059406), 6.454978571459716), linewidth(0.4) + blue); draw(circle((-0.4306930693069312,-5.559405940594061), 6.4549785714597165), linewidth(0.4) + blue); draw((1,6)--(0.5,-3), linewidth(0.4) + red); draw((6,-5)--(-2.317647058823531,2.129411764705881), linewidth(0.4) + red); draw((-5,-1)--(2.609589041095891,2.458904109589041), linewidth(0.4) + red); draw((1,6)--(-1.9489051094890524,-2.10948905109489), linewidth(0.4) + red); draw((0.7107692307692306,0.7938461538461522)--(-0.3598796820167596,2.260330874453913), linewidth(0.4) + red); draw((0.06930693069306859,3.44059405940594)--(0.7107692307692306,0.7938461538461522), linewidth(0.4) + red); draw(circle((0.06930693069306859,3.44059405940594), 2.723370771306052), linewidth(0.4) + blue); draw((-0.8613861386138628,0.8811881188118803)--(0.5,-3), linewidth(0.4) + red); draw((0.7107692307692306,0.7938461538461522)--(-1.9489051094890524,-2.10948905109489), linewidth(0.4) + red); draw((-0.8613861386138628,0.8811881188118803)--(0.7107692307692306,0.7938461538461522), linewidth(0.4) + red); /* dots and labels */ dot((1,6),dotstyle); label("$A$", (1.112354664737735,6.27763982744375), NE * labelscalefactor); dot((-5,-1),dotstyle); label("$B$", (-4.889074256024703,-0.7331203209014516), NW * labelscalefactor); dot((6,-5),dotstyle); label("$C$", (6.104452357917399,-4.715886786498337), SE * labelscalefactor); dot((0.5,-3),linewidth(4pt) + dotstyle); label("$M$", (0.6213286621298992,-2.779061998434098), NE * labelscalefactor); dot((-0.8613861386138628,0.8811881188118803),linewidth(4pt) + dotstyle); label("$H$", (-0.7426324562252004,1.0945875776943792), NE * labelscalefactor); dot((0.7107692307692306,0.7938461538461522),linewidth(4pt) + dotstyle); label("$N$", (0.8122832186996131,1.0127499105930733), NE * labelscalefactor); dot((-1.9489051094890524,-2.10948905109489),linewidth(4pt) + dotstyle); label("$D$", (-1.8338013509092799,-1.8788476603197335), NW * labelscalefactor); dot((2.609589041095891,2.458904109589041),linewidth(4pt) + dotstyle); label("$E$", (2.7218287843967524,2.6767824749862923), NE * labelscalefactor); dot((-2.317647058823531,2.129411764705881),linewidth(4pt) + dotstyle); label("$F$", (-2.215710464048708,2.349431806581069), NW * labelscalefactor); dot((0.06930693069306859,3.44059405940594),linewidth(4pt) + dotstyle); label("$S$", (0.18486110425626734,3.658834480201963), NE * labelscalefactor); dot((-0.3598796820167596,2.260330874453913),linewidth(4pt) + dotstyle); label("$G$", (-0.2516064536173645,2.485827918416579), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Nice exercise for projective geo and inversion Let's do an inversion around $(AFE)$, we shall denote this by $\psi$. Since we have that $-1=(A,H;G,D)=(G,D;A,H)$ this implies that $SG.SD=\left(\frac{1}{2}AH\right)^2$. Thus we have that $G\overset{\psi}{\rightarrow} D$, this implies that $\angle GNS=\angle SDN = \angle HDN$. Since we have that $HNMD$ is cyclic this implies that $\angle HDN=\angle HMN=\angle HMA$, thus we have that $\angle GNS = \angle HMA$.