Problem

Source:

Tags: combinatorics unsolved, combinatorics



There is a deck of cards placed at every points $A_1, A_2, \ldots , A_n$ and $O$, where $n \geq 3$. We can do one of the following two operations at each step: $1)$ If there are more than 2 cards at some points $A_i$, we can withdraw three cards from that deck and place one each at $A_{i-1}, A_{i+1}$ and $O$. (Here $A_0=A_n$ and $A_{n+1}=A_1$); $2)$ If there are more than or equal to $n$ cards at point $O$, we can withdraw $n$ cards from that deck and place one each at $A_1, A_2, \ldots , A_n$. Show that if the total number of cards is more than or equal to $n^2+3n+1$, we can make the number of cards at every points more than or equal to $n+1$ after finitely many steps.