Let $x_1, x_2, \ldots ,x_n(n\ge 2)$ be real numbers greater than $1$. Suppose that $|x_i-x_{i+1}|<1$ for $i=1, 2,\ldots ,n-1$. Prove that \[\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots +\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}<2n-1\]
Problem
Source: Baltic Way 2010
Tags: inequalities, induction, inequalities proposed
19.11.2010 20:34
It is strange, the Baltic Way 2010 was held on November 6th 2010, yet this problem was posted in the Inequalities Marathon here nearly a year before. It was followed by a solution by socrates (slightly edited to strengthen $\le$ to $<$):
21.11.2010 15:12
WakeUp wrote: Let $x_1, x_2, \ldots x_n(n\ge 2)$ be real numbers greater than $1$. Suppose that $|x_i-x_{i+1}|<1$ for $i=1, 2,\ldots n-1$. Prove that \[\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots +\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}<2n-1\] $A=\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots +\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}$ $|x_i-x_{i+1}|<1$ ----> a. $x_i\geq x_{i+1}$ ---> $1\leq\frac{x_i}{x_{i+1}}<2$ <-> ($\frac{x_i-x_{i+1}}{x_{i+1}}<\frac{1}{x_{i+1}}<1$) b. $x_i\leq x_{i+1}$---> $0<\frac{x_i}{x_{i+1}}\leq1$ A---> max ---> $x_i\geq x_{i+1}$ ---> $x_1\geq x_2\geq x_3\geq...\geq x_{n}\geq1$ $\frac{x_n}{x_1}\leq1$ and $1\leq k<n-1$ --> $\frac{x_i}{x_{i+1}}<2$ $A=\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots +\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}<2+2+2+...+2+1=2(n-1)+1=2n-1$
21.11.2017 09:01
I think induction on $n$ solve this problem.In fact the answer of $wake up$ is correct.