Problem

Source: Baltic Way 2003

Tags: calculus, integration, analytic geometry, combinatorics unsolved, combinatorics



A lattice point in the plane is a point with integral coordinates. The centroid of four points $(x_i,y_i )$, $i = 1, 2, 3, 4$, is the point $\left(\frac{x_1 +x_2 +x_3 +x_4}{4},\frac{y_1 +y_2 +y_3 +y_4 }{4}\right)$. Let $n$ be the largest natural number for which there are $n$ distinct lattice points in the plane such that the centroid of any four of them is not a lattice point. Prove that $n = 12$.