The sequence $(a_n)$ is defined by $a_1=\sqrt{2}$, $a_2=2$, and $a_{n+1}=a_na_{n-1}^2$ for $n\ge 2$. Prove that for every $n\ge 1$ \[(1+a_1)(1+a_2)\cdots (1+a_n)<(2+\sqrt{2})a_1a_2\cdots a_n. \]
Source:
Tags: inequalities, induction, algebra proposed, algebra
The sequence $(a_n)$ is defined by $a_1=\sqrt{2}$, $a_2=2$, and $a_{n+1}=a_na_{n-1}^2$ for $n\ge 2$. Prove that for every $n\ge 1$ \[(1+a_1)(1+a_2)\cdots (1+a_n)<(2+\sqrt{2})a_1a_2\cdots a_n. \]