Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality \[\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq \frac 32.\]
Problem
Source: Mediterranean MO 2003
Tags: inequalities, blogs, inequalities unsolved, algebra, highschoolmath, High school olympiad
31.10.2010 17:12
$\Leftrightarrow\sum a\geq{\frac{3}^{2}}+\sum{\frac{ab^2}^{1+b^2}}$ by AM-GM $1+b^2\geq 2b$ and so ${\frac{ab^2}^{2b}}\geq{\frac{ab^2}^{1+b^2}}$ $\sum a\geq{\frac{3}^{2}}+{\sum{\frac{ab}^{2}}}\geq\frac{3}^{2}}+\sum{\frac{ab^2}^{1+b^2}}$ we have to show that $3\geq\sum{ab}$ $\Leftrightarrow{\frac{\sum a}^{3}}\geq{\sqrt{\frac{\sum ab}^{3}}}$ which is the MacLaurin-Inequality
31.10.2010 17:26
With the same condition ; the stronger result also hold : $ \sum \frac{a}{ \sqrt{b^2 +1}} \ge \frac{3}{ \sqrt{2}}$ And of course ; It's much harder
04.11.2010 14:41
No one try my problem ????? I 'm a little bit sad Actually ; I think the second ineq is more suitable for such competition like IMO Not very hard ; but nice If nobody give a solution ; I can post it in $ 6^{th}$ November
05.11.2010 07:22
JohannesG wrote: $\Leftrightarrow\sum a\geq{\frac{3}^{2}}+\sum{\frac{ab^2}^{1+b^2}}$ by AM-GM $1+b^2\geq 2b$ and so ${\frac{ab^2}^{2b}}\geq{\frac{ab^2}^{1+b^2}}$ $\sum a\geq{\frac{3}^{2}}+{\sum{\frac{ab}^{2}}}\geq\frac{3}^{2}}+\sum{\frac{ab^2}^{1+b^2}}$ we have to show that $3\geq\sum{ab}$ $\Leftrightarrow{\frac{\sum a}^{3}}\geq{\sqrt{\frac{\sum ab}^{3}}}$ which is the MacLaurin-Inequality $LHS=\sum{a-\frac{ab^2}{b^2+1}}$
06.11.2010 17:38
06.11.2010 17:59
Your proof is wrong If $a+b+c=3$, then $ab^2+bc^2+ca^2\le 3$ does not hold. Take for example $a=1,b=2, c=0$.
07.11.2010 14:41
Applying AM-GM We'll get : $\dfrac{a}{b^2+1}$=$a-\dfrac{ab^2}{1+b^2}$>$a-\dfrac{ab^2}{2b}$=$a-\dfrac{ab}{2}$ So inequality becomes: $a+b+c-\dfrac{ab+bc+ca}{2}$>$\dfrac{3}{2}$ since $3(ab+bc+ac)$<$(\sum\limits_{cyc})^2 a$=9 This is my proof,Equality holds if a=b=c=1
09.11.2010 13:57
Here is the solution as I promised ( sorry ; I 'm a little bit busy these days ) It's also the solution my friend gave me in one Math forum in Vietnam : Solution : firstly ; we will introduce the following lemma : lemma : If $a ; b ; c$ are positive real numbers such that : $ a + b + c \le 3$ then : $ (ab + bc + ca ) (a^2 b + b^2 c + c^2 a) \le 9$ ( this lemma is very well - known ; if you cannot prove it ; ask me or ask can_hang2007 for the proof) back to our problem : since : $ 2\sqrt{ 2(b^2 +1)} \le ( b^2 +1 ) + 2 = b^2 +3$ $ \implies \frac{a}{\sqrt{ 2(b^2 +1)} } \ge \frac{2a}{b^2 + 3}$ So ; we only need to prove $ \sum \frac{a}{b^2 + 3} \ge \frac{3}{4} \ \ (*)$ $ \frac{a}{b^2 + 3} = \frac{1}{3} \frac{a(3+b^2) - ab^2}{b^2 +3} = \frac{1}{3} \left( a - \frac{ab^2 }{b^2 + 3} \right)$ So ; it's very easy to see that $(*)$ is equivalent to : $ \sum \frac{ab^2}{b^2 + 3} \le \frac{3}{4}$ Now ; apply AM-GM ineq for four positive real numbers : $ b^2 + 3 = b^2 + 1 +1 +1 \ge 4 \sqrt{b}$ $ \implies \frac{ab^2}{b^2 + 3} \le \frac{ab^2}{4 \sqrt{b}}$ $ \implies \sum \frac{ab^2}{b^2 + 3} \le \sum \frac{ab\sqrt{b} }{4 }$ So ; we need to prove that : $ \sum ab\sqrt{b} \le 3$ $ \iff ( \sum ab\sqrt{b})^2 \le 9 \ \ (**)$ Now ; Applying BCS inequality : $ ( ab \sqrt{b} + bc \sqrt{c} + ca \sqrt{a})^2 \le (ab + bc + ca)(ab^2 + bc^2 + ca^2 ) \le 9$ ( due to the lemma) thus ; $(**)$ is right and the initial ineq is completely proved
13.11.2010 08:40
nguyenvuthanhha wrote: Here is the solution as I promised ( sorry ; I 'm a little bit busy these days ) It's also the solution my friend gave me in one Math forum in Vietnam : Solution : firstly ; we will introduce the following lemma : lemma : If $a ; b ; c$ are positive real numbers such that : $ a + b + c \le 3$ then : $ (ab + bc + ca ) (a^2 b + b^2 c + c^2 a) \le 9$ ( this lemma is very well - known ; if you cannot prove it ; ask me or ask can_hang2007 for the proof) back to our problem : since : $ 2\sqrt{ 2(b^2 +1)} \le ( b^2 +1 ) + 2 = b^2 +3$ $ \implies \frac{a}{\sqrt{ 2(b^2 +1)} } \ge \frac{2a}{b^2 + 3}$ So ; we only need to prove $ \sum \frac{a}{b^2 + 3} \ge \frac{3}{4} \ \ (*)$ $ \frac{a}{b^2 + 3} = \frac{1}{3} \frac{a(3+b^2) - ab^2}{b^2 +3} = \frac{1}{3} \left( a - \frac{ab^2 }{b^2 + 3} \right)$ So ; it's very easy to see that $(*)$ is equivalent to : $ \sum \frac{ab^2}{b^2 + 3} \le \frac{3}{4}$ Now ; apply AM-GM ineq for four positive real numbers : $ b^2 + 3 = b^2 + 1 +1 +1 \ge 4 \sqrt{b}$ $ \implies \frac{ab^2}{b^2 + 3} \le \frac{ab^2}{4 \sqrt{b}}$ $ \implies \sum \frac{ab^2}{b^2 + 3} \le \sum \frac{ab\sqrt{b} }{4 }$ So ; we need to prove that : $ \sum ab\sqrt{b} \le 3$ $ \iff ( \sum ab\sqrt{b})^2 \le 9 \ \ (**)$ Now ; Applying BCS inequality : $ ( ab \sqrt{b} + bc \sqrt{c} + ca \sqrt{a})^2 \le (ab + bc + ca)(ab^2 + bc^2 + ca^2 ) \le 9$ ( due to the lemma) thus ; $(**)$ is right and the initial ineq is completely proved that's great! nguyenvuthanhha, thank you and I remember the lemma I have proved it in my blog
13.11.2010 09:59
Very nice proof of the lemma ; Kuing ; Thanks It's much shorter and easier than mine
01.10.2011 19:27
02.10.2011 17:26
Plugging (2) and (3) into the RHS of (1), we not get iinequality
08.10.2011 10:32
the myh123's prove isnot right. who can prove by Cauchy inequality?
16.10.2011 09:27
who can prove by Cauchy inequality?
16.10.2011 14:56
\[ \frac{a}{b^{2}+1}+\frac{b}{c^{2}+1}+\frac{c}{a^{2}+1}\geq\frac{3}{2}. \] $\frac{a}{b^2+1}=\frac{a(b^2+1)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\geq\ a-\frac{ab^2}{2b}=a-\frac{ab}{2}$ $\sum_{cyc} \frac{a}{b^2+1}\geq\ a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}=a+b+c-\frac{ab+ac+bc}{2}\geq\ a+b+c-\frac{\frac{(a+b+c)^2}{3}}{2}=3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}$ it is nice
18.10.2011 22:07
Uzbekistan wrote: $\ a+b+c-\frac{a^2+b^2+c^2}{2}\geq\ 3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}$ it is nice It is wrong, try $a,b,c=2,0.5,0.5$ to get $a+b+c-\frac{a^2+b^2+c^2}{2}=2+0.5+0.5-4.5/2<1.5$ so your proof is wrong. To be correct $a+b+c-\frac{ab+bc+ac}{2}\ge a+b+c -\frac{(a+b+c)^2}{6}=1.5$ by $AM-GM$
22.03.2013 14:00
\[\sum_{cyc}bc \le \frac{1}{3}(\sum_{cyc}a)^2=3\Rightarrow\] \[\sum_{cyc} \frac{a}{b^2+1}=\sum_{cyc}a-\sum_{cyc} \frac{ab^2}{b^2+1}\ge\sum_{cyc}a-\sum_{cyc} \frac{ab}{2}\ge 3-\frac{3}{2}=\frac{3}{2}.\]
06.12.2017 17:53
Amir Hossein wrote: Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality \[\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq \frac 32.\] Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality $$\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\geq \frac{3}{2}$$
10.12.2017 07:18
nguyenvuthanhha wrote: With the same condition ; the stronger result also hold : $ \sum \frac{a}{ \sqrt{b^2 +1}} \ge \frac{3}{ \sqrt{2}}$ And of course ; It's much harder one line down
05.03.2020 15:41
Amir Hossein wrote: Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality \[\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq \frac 32.\] Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality $$\frac a{b^n+1}+\frac b{c^n+1}+\frac c{a^n+1}\geq \frac 32.$$Where $ n\in N^+.$ h
21.10.2020 05:38
Amir Hossein wrote: Let $a, b, c$ be non-negative numbers with $a+b+c = 3$. Prove the inequality \[\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq \frac 32.\] Let three non-negative reals $ a,b,c $ satisfy : $ a+b+c=3 $.Prove that$$\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}+\frac{3abc}{2} \le 3$$here