Let $r_1=2$ and $r_n = \prod^{n-1}_{k=1} r_i + 1$, $n \geq 2.$ Prove that among all sets of positive integers such that $\sum^{n}_{k=1} \frac{1}{a_i} < 1,$ the partial sequences $r_1,r_2, ... , r_n$ are the one that gets nearer to 1.
Problem
Source: China TST 1987, problem 3
Tags: induction, algebra unsolved, algebra
27.12.2005 13:38
Proof:Lemma:\[ 1-(\frac{1}{r_1}+\frac{1}{r_2}+\ldots+\frac{1}{r_n})=\frac{1}{r_1r_2\ldots r_n} \] The proof of Lemma:When $n=1$,it's easy to see it's correct. Suppose it's correct for $n-1(n\geq2)$, then \[ 1-(\frac{1}{r_1}+\frac{1}{r_2}+\ldots+\frac{1}{r_n})=\frac{1}{r_1r_2\ldots r_{n-1}}-\frac{1}{r_n}=\frac{1}{r_n-1}-\frac{1}{r_n}=\frac{1}{(r_n-1)r_n}=\frac{1}{r_1r_2\ldots r_n} \] That means the lemma is correct. We only need to show that $\forall a_1\leq a_2\leq\ldots\leq a_n\in\mathbb{N},\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}<1$, then we must have \[ \frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}\leq\frac{1}{r_1}+\frac{1}{r_2}+\ldots+\frac{1}{r_n} \] We prove it by induction: When $n=1$,$\frac{1}{a_1}<1$,$a_1\geq2=r_1$.So $\frac{1}{a_1}\leq\frac{1}{r_1}$. Suppose the conclusion is correct for all positive integer smaller than $n$,and there exist $a_1,a_2,\ldots,a_n$ such that \[ \frac{1}{r_1}+\frac{1}{r_2}+\ldots+\frac{1}{r_n}<\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}<1 \eqno(*) \] By Lemma\[ 1-(\frac{1}{r_1}+\frac{1}{r_2}+\ldots+\frac{1}{r_n})=\frac{1}{r_1r_2\ldots r_n} \] And it's obvious that \[ 1-(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n})\leq\frac{1}{a_1a_2\ldots a_n} \] Because $\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}=\frac{x}{a_1a_2\ldots a_n}<1,x\in\mathbb{Z}$ So $x<a_1a_2\ldots a_n$,and $x\leq a_1a_2\ldots a_n-1$,so \[ 1-(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n})=1-\frac{x}{a_1a_2\ldots a_n}\leq\frac{1}{a_1a_2\ldots a_n} \] So by (*) \[ a_1a_2\ldots a_n\geq r_1r_2\ldots r_n \eqno(**) \] And by the transform of Abel \[ \begin{eqnarray*} \sum_{i=1}^n\frac{a_i}{r_i}&=&a_n\sum_{i=1}^n\frac{1}{r_i}+\sum_{k=1}^{n-1}(\sum_{i=1}^k\frac{1}{r_i})(a_k-a_{k+1})\\ &<&a_n\sum_{i=1}^n\frac{1}{a_i}+\sum_{k=1}^{n-1}(\sum_{i=1}^k\frac{1}{a_i})(a_k-a_{k+1})\\ &=&\sum_{i=1}^n\frac{a_i}{a_i}=n \]\end{eqnarray*} By AM-GM \[ n>\sum_{i=1}^n\frac{a_i}{r_i}\geq n\sqrt[n]{\frac{a_1a_2\ldots a_n}{r_1r_2\ldots r_n}} \] So \[ a_1a_2\ldots a_n<r_1r_2\ldots r_n \] And it's a contradiction with (**). So there doesn't exist $a_1,a_2,\ldots,a_n$ satisfied (*),that means the conclusion is correct.
03.07.2007 12:40
isn't it obvious? we take the smallest integer such that it doesn't exceed or equal 1..and it's easy to show that it always works..?
26.01.2008 00:17
srulikbd wrote: isn't it obvious? we take the smallest integer such that it doesn't exceed or equal 1..and it's easy to show that it always works..? well, that not necessary give the largest sum as a whole
06.07.2018 08:55
I suppose the messy code is: $\sum_{i=1}^n\frac{a_i}{r_i}=a_n\sum_{i=1}^n\frac{1}{r_i}+\sum_{k=1}^{n-1}(\sum_{i=1}^k\frac{1}{r_i})(a_k-a_{k+1})<a_n\sum_{i=1}^n\frac{1}{a_i}+\sum_{k=1}^{n-1}(\sum_{i=1}^k\frac{1}{a_i})(a_k-a_{k+1})=\sum_{i=1}^n\frac{a_i}{a_i}=n$
31.01.2024 21:05
Pretty much as a problem from Bulgaria RMM TST 2023.