Problem

Source:

Tags: algebra, polynomial, number theory, Divisibility, IMO Shortlist, IMO Longlist



$(GBR 1)$ The polynomial $P(x) = a_0x^k + a_1x^{k-1} + \cdots + a_k$, where $a_0,\cdots, a_k$ are integers, is said to be divisible by an integer $m$ if $P(x)$ is a multiple of $m$ for every integral value of $x$. Show that if $P(x)$ is divisible by $m$, then $a_0 \cdot k!$ is a multiple of $m$. Also prove that if $a, k,m$ are positive integers such that $ak!$ is a multiple of $m$, then a polynomial $P(x)$ with leading term $ax^k$can be found that is divisible by $m.$