$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and $q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$
Problem
Source:
Tags: quadratics, algebra, Inequality, roots, polynomial, IMO Longlist, IMO Shortlist