Prove that the volume $V$ and the lateral area $S$ of a right circular cone satisfy the inequality
\[\left( \frac{6V}{\pi}\right)^2 \leq \left( \frac{2S}{\pi \sqrt 3}\right)^3\]
When does equality occur?
Let $r$ be the radius of the base, $h$ the vertical height so that $\sqrt{r^2+h^2} $ is the slant height.
Then $S=\pi r\sqrt{r^2+h^2}$ and $V=\frac{1}{3}\pi r^2h$.
Then
\[ \left(\frac{6V}{\pi}\right)^{2}\leq\left(\frac{2S}{\pi\sqrt 3}\right)^{3}\]
\[ \iff (2r^h)^{2}\le \left(\frac{2r\sqrt{r^2+h^2}}{\sqrt 3}\right)^{3}\]
\[ \iff 3\sqrt{3}rh^2 \le 2(\sqrt{r^2+h^2})^3\]
Squaring, this becomes
\[ 27r^2h^4 \le 4(r^2+h^2)^3\]
Now let $r^2=a$ and $h^2=b$. Then after expanding the inequality becomes
\[15ab^2 \le 4a^3+12a^2b+4b^3 \]
Which is true since $(2a-b)^2(a+4b)\ge 0$. Hence equality occurs when $2a=b$, i.e. $2r^2=h^2$. In this case the slant height is equal to $\sqrt{3}r$.