Problem

Source:

Tags: number theory unsolved, number theory



For integers $n>1$, define $f(n)$ to be the sum of all postive divisors of $n$ that are less than $n$. Prove that for any positive integer $k$, there exists a positive integer $n>1$ such that $n<f(n)<f^2(n)<\cdots<f^k(n)$, where $f^i(n)=f(f^{i-1}(n))$ for $i>1$ and $f^1(n)=f(n)$.