Problem

Source:

Tags: geometry, perimeter, perpendicular bisector, geometry unsolved



A $30$-gon $A_1A_2\cdots A_{30}$ is inscribed in a circle of radius $2$. Prove that one can choose a point $B_k$ on the arc $A_kA_{k+1}$ for $1 \leq k \leq 29$ and a point $B_{30}$ on the arc $A_{30}A_1$, such that the numerical value of the area of the $60$-gon $A_1B_1A_2B_2 \dots A_{30}B_{30}$ is equal to the numerical value of the perimeter of the original $30$-gon.


Attachments: