Problem

Source:

Tags: analytic geometry, function, combinatorics proposed, combinatorics



Let $\Lambda$ be the set of points in the plane whose coordinates are integers and let $F$ be the collection of all functions from $\Lambda$ to $\{1,-1\}.$ We call a function $f$ in $F$ perfect if every function $g$ in $F$ that differs from $f$ at finitely many points satisfies the condition \[ \sum_{0<d(P,Q)<2010} \frac{f(P)f(Q)-g(P)g(Q)}{d(P,Q)} \geq 0 \] where $d(P,Q)$ denotes the distance between $P$ and $Q.$ Show that there exist infinitely many perfect functions that are not translates of each other.