Problem

Source:

Tags: inequalities, induction, function, combinatorics unsolved, combinatorics



Let $G=G(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. Suppose $|V|=n$. A map $f:\,V\rightarrow\mathbb{Z}$ is called good, if $f$ satisfies the followings: (1) $\sum_{v\in V} f(v)=|E|$; (2) color arbitarily some vertices into red, one can always find a red vertex $v$ such that $f(v)$ is no more than the number of uncolored vertices adjacent to $v$. Let $m(G)$ be the number of good maps. Prove that if every vertex in $G$ is adjacent to at least one another vertex, then $n\leq m(G)\leq n!$.