Problem

Source:

Tags: arithmetic sequence, combinatorics, Probabilistic Method, Coloring, Extremal combinatorics, IMO Shortlist



Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. Alternative formulation Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. Proposed by Romania