Show that if $a, b, c$ are the lengths of the sides of a triangle and if $2S = a + b + c$, then \[\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N \] Proposed by Greece.
Problem
Source:
Tags: rearrangement inequality, three variable inequality, triangle inequality, Inequality, IMO Shortlist
19.08.2010 13:16
From the general form of Adreescu we have: $\frac{a^n}{b+c}+\frac{b^n}{a+c}+\frac{c^n}{a+b}\geq \frac{(a+b+c)^n}{3^{n-2}(2(a+b+c))}=\frac{2^n}{3^{n-2}4S}S^n=(\frac{2}{3})^{n-2}S^{n-1}$ Best Regards, Chris
19.08.2010 15:26
Here is another solution. $n=1 \: \Longrightarrow$ $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} \: \Longleftrightarrow $ $(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) \geq \frac{9}{2}$ which is true by Cauchy-Schwarz inequality. $n \geq 2 \: \Longrightarrow$ By Cauchy-Schwarz inequality again $2(a+b+c)\left(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\right) \geq \left(a^{\frac{n}{2}}+b^{\frac{n}{2}}+c^{\frac{n}{2}}\right)^2 \geq 3^{2-n}(a+b+c)^n$ $\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b} \geq \left(\frac{2}{3}\right)^{n-2} S^{n-1}$ Solution is done.
29.08.2010 18:13
Here is an alternative proof. Note \[\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b}\geq\left(\frac{2}{3}\right)^{n-2}S^{n-1}\] \[ \iff \frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b}\ge \frac{1}{2\cdot 3^{n-2}}(a+b+c)^{n-1}\] By the power means inequality, $\frac{a^n+b^n+c^n}{3}\ge \left( \frac{a+b+c}{3} \right) ^n$ Assume $a\ge b \ge c$. Then by Chebyshev's inequality $3\left(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\right) \ge \left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b} \right)$ Therefore $\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge \left(\frac{a^n+b^n+c^n}{3}\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) $ $\ge \left( \frac{a+b+c}{3} \right) ^n \left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)$ So it suffices to prove $\left( \frac{a+b+c}{3} \right) ^n \left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge \frac{1}{2\cdot 3^{n-2}}(a+b+c)^{n-1}$ This rearranges to $(b+c+c+a+a+b)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b} \right)\ge 9$ which is of course the Cauchy-Schwarz Inequality or AM-HM. In fact the conditon $a,b,c$ are sides of a triangle is not necessary, nor is it necessary $n\in \mathbb{N}$, we only need $n\ge 1$ and $n\in \mathbb{R}$.
06.08.2011 18:44
Letting $a=x+y,b=y+z,c=z+x$ it suffices to prove that: ${\frac{1}{3} *\frac{(x+y)^n}{z}+\frac{1}{3} *\frac{(y+z)^n}{x}+\frac{1}{3} *\frac{(z+x)^n}{y} \geq \left(\frac{2}{3}\right)^{n-2}}(x+y+z)^{n-1}$ Normalizing to $x+y+z=1$ we have from the above inequality ${\frac{1}{3} *\frac{(1-z)^n}{z}+\frac{1}{3} *\frac{(1-x)^n}{x}+\frac{1}{3} *\frac{(1-y)^n}{y} \geq \left(\frac{2}{3}\right)^{n-2}}$ Using Jensen on $f(t)=\frac{(1-t)^n}{t}$ (which is convex for $t$ in the positive reals) the result directly follows. Is this proof legitimate?
10.03.2013 08:53
We can do it by induction using Rearrangement Inequality as well. (by using the notation from Engel, and extending the scalar product to 3 sequences) The case when $ n = k + 1 $ is similar to the case $n = 1$.
22.12.2013 20:27
Helder: $(\dfrac{a^{n}}{b+c}+\dfrac{b^{n}}{c+a}+\dfrac{c^{n}}{a+b})((b+c)+(c+a)+(a+b))(1+1+1)(1+1+1)\cdots(1+1+1)\geq (a+b+c)^{n} $ and this is equialent with \[ \frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b}\geq\left(\frac{2}{3}\right)^{n-2}S^{n-1} \]
22.12.2013 20:30
also $\geq (n-2)(2S-3)$ which is super weak
02.06.2014 09:00
$a \ge b \ge c \Rightarrow a^{n-1} \ge b^{n-1} \ge c^{n-1}$ and $\frac{a}{b+c} \ge \frac{b}{c+a} \ge \frac{c}{a+b}$ so we have by Tchebycheff: $\sum{\frac{a^n}{b+c}} \ge \frac{(\sum{a^{n-1}})(\sum{\frac{a}{b+c}})}{3}$. ....(1) Now by power-mean inequality: $(\frac{\sum{a^{n-1}}}{3})^{\frac{1}{n-1}} \ge \frac{a+b+c}{3} \Rightarrow \sum{a^{n-1}} \ge \frac{2^{n-1}}{3^{n-2}}S^{n-1}$ Also by the famous Nesbitt inequality: $\sum{\frac{a}{b+c}} \ge \frac{3}{2}$ Combining these inequalities with (1) the result follows.
09.03.2021 17:27
\begin{align*} \sum_{\text{cyc}}\frac{a^n}{b+c}&\ge\frac{a^n+b^n+c^n}3\sum_{\text{cyc}}\frac1{a+b}\qquad~\text{(Chebyshev)} \\ &\ge\left(\frac{a+b+c}3\right)^n\sum_{\text{cyc}}\frac1{a+b}\qquad\text{(Power Mean)} \\ &=\left(\frac{a+b+c}3\right)^{n-1}\left(\frac{a+b+c}3\sum_{\text{cyc}}\frac1{a+b}\right) \\ &\ge\frac32\left(\frac{a+b+c}3\right)^{n-1}\qquad\qquad~~\text{(Nesbitt)} \\ &=\frac32\cdot s^{n-1}\cdot\left(\frac23\right)^{n-1} \\ &=\left(\frac23\right)^{n-2}s^{n-1}\qquad\square \\ \end{align*}Weird that triangle inequality wasn't used.