Problem

Source:

Tags: algebra proposed, algebra



interesting sequence $n$ is a natural number and $x_1,x_2,...$ is a sequence of numbers $1$ and $-1$ with these properties: it is periodic and its least period number is $2^n-1$. (it means that for every natural number $j$ we have $x_{j+2^n-1}=x_j$ and $2^n-1$ is the least number with this property.) There exist distinct integers $0\le t_1<t_2<...<t_k<n$ such that for every natural number $j$ we have \[x_{j+n}=x_{j+t_1}\times x_{j+t_2}\times ... \times x_{j+t_k}\] Prove that for every natural number $s$ that $s<2^n-1$ we have \[\sum_{i=1}^{2^n-1}x_ix_{i+s}=-1\] Time allowed for this question was 1 hours and 15 minutes.