a) prove that every discrete subgroup of $(\mathbb R^2,+)$ is in one of these forms: i-$\{0\}$. ii-$\{mv|m\in \mathbb Z\}$ for a vector $v$ in $\mathbb R^2$. iii-$\{mv+nw|m,n\in \mathbb Z\}$ for tho linearly independent vectors $v$ and $w$ in $\mathbb R^2$.(lattice $L$) b) prove that every finite group of symmetries that fixes the origin and the lattice $L$ is in one of these forms: $\mathcal C_i$ or $\mathcal D_i$ that $i=1,2,3,4,6$ ($\mathcal C_i$ is the cyclic group of order $i$ and $\mathcal D_i$ is the dyhedral group of order $i$).(20 points)