Problem

Source:

Tags: floor function, ceiling function, combinatorics proposed, combinatorics



suppose that $\mathcal F\subseteq X^{(K)}$ and $|X|=n$. we know that for every three distinct elements of $\mathcal F$ like $A,B$ and $C$ we have $A\cap B \not\subset C$. a)(10 points) Prove that : \[|\mathcal F|\le \dbinom{k}{\lfloor\frac{k}{2}\rfloor}+1\] b)(15 points) if elements of $\mathcal F$ do not necessarily have $k$ elements, with the above conditions show that: \[|\mathcal F|\le \dbinom{n}{\lceil\frac{n-2}{3}\rceil}+2\]