Problem

Source:

Tags: algebra, polynomial, calculus, derivative, algebra solved



For each polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ we define it's derivative as this and we show it by $p'(x)$: \[p'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+2a_2x+a_1\] a) For each two polynomials $p(x)$ and $q(x)$ prove that:(3 points) \[(p(x)q(x))'=p'(x)q(x)+p(x)q'(x)\] b) Suppose that $p(x)$ is a polynomial with degree $n$ and $x_1,x_2,...,x_n$ are it's zeros. prove that:(3 points) \[\frac{p'(x)}{p(x)}=\sum_{i=1}^{n}\frac{1}{x-x_i}\] c) $p(x)$ is a monic polynomial with degree $n$ and $z_1,z_2,...,z_n$ are it's zeros such that: \[|z_1|=1, \quad \forall i\in\{2,..,n\}:|z_i|\le1\] Prove that $p'(x)$ has at least one zero in the disc with length one with the center $z_1$ in complex plane. (disc with length one with the center $z_1$ in complex plane: $D=\{z \in \mathbb C: |z-z_1|\le1\}$)(20 points)