Let $a,b,c$ be positive real numbers. Prove the inequality \[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c+\frac{4(a-b)^2}{a+b+c}.\] When does equality occur?
Problem
Source:
Tags: inequalities, LaTeX
06.05.2005 18:52
Hi zhaoli, Thanks for the problem, but do you know the other BMO problems?? If so, can you please post them. Regards, Zhivko
06.05.2005 19:52
rewrite it to $\frac{c+a}{b}(a-b)^2+\frac{a+b+c}{c}(b-c)^2+\frac{a+b+c}{a}(c-a)^2 \geq 3(a-b)^2$
06.05.2005 23:46
Rewrite the intial inequality to: $\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \geq \frac{4(a-b)^2}{a+b+c}$. This is equivalent to $(a+b+c)\left(\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \right) \geq 4(a-b)^2$. Using Cauchy one can prove $(a+b+c)\left(\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \right) \geq 4$ $($max$(a,b,c)-$min$(a,b,c)$$)^2$. q.e.d.
07.05.2005 18:03
Nice solution! I always don't know how to deal with some non-symmetric inequalities.
07.05.2005 18:35
The problems of Balkan Mathematical Olympiad from 1984-2003 can be found here The problems of Balkan Mathematical Olympiad from 2004 can be found at: http://www.artofproblemsolving.com/Forum/topic-5591.html
07.05.2005 21:14
Thanks zhaoli, but what I meant were the problems from BMO 2005 (you posted only the third one). Well anyways, they will certainly appear at some point. Regards, Zhivko
07.05.2005 21:15
Jivko, look better, they are in the corresponding subforums.
07.05.2005 22:08
Yes, harazi, but some of us are only looking in the algebra section ... and are expecting to find all the BMO 2005 problems there. Thanks, harazi! Zhivko
07.05.2005 23:21
jivko777 wrote: Yes, harazi, but some of us are only looking in the algebra section ... and are expecting to find all the BMO 2005 problems there. Thanks, harazi! Zhivko Check out this thread: http://www.mathlinks.ro/Forum/viewtopic.php?t=36018
09.05.2005 16:28
Andrei wrote: Using Cauchy one can prove $(a+b+c)\left(\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \right) \geq 4$ $($max$(a,b,c)-$min$(a,b,c)$$)^2$. q.e.d. I don't understand about it.Could you explain anymore?
09.05.2005 17:39
$(a+b+c)\left(\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \right) \geq (|a-b|+|b-c|+|c-a|)^2 $ WLOG $|c-a|=max(|a-b|,|b-c|,|c-a|)$ Then, We get $|a-b|+|b-c|\geq |c-a|$ So, $|a-b|+|b-c|+|c-a| \geq 2|c-a| $ Therefore, $(a+b+c)\left(\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \right)\geq 4 max(|a-b|,|b-c|,|c-a|)^2 $.
09.05.2005 17:53
Thank you very very much.
10.05.2005 02:02
mathpk wrote: Thank you very very much. Equality hold iff one of twe cases occur : (1).a=b=c ; (2). c=ωb and a=ωc ,where ω=(5^1/2-1)/2.
10.05.2005 09:27
With Lagrange you have a^2/b+b^2/c+ c^2/a - (a+b+c)= ( (ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac )/a+b+c. So you have to prove that (ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac >= 4(a-b)^2.But (ab-c^2)^2/ac >= 0 and (ac-b^2)^2/bc + (bc - a^2)^2/ab >= (ac-b^2-bc+a^2)^2/b(a+c) =(a-b)^2(a+b+c)^2/b(a+c). With AM-GM you have b(a+c) <= (a+b+c)^2/4 so (a-b)^2(a+b+c)^2/b(a+c) >= 4(a-b)^2. We get a^2/b+b^2/c+ c^2/a - (a+b+c) >= 4(a-b)^2/(a+b+c).
10.05.2005 10:09
jivko777 wrote: Thanks zhaoli, but what I meant were the problems from BMO 2005 (you posted only the third one). Well anyways, they will certainly appear at some point. Regards, Zhivko you can find the questions of bmo 2005 at http://www.rms.unibuc.ro/balkan.html
12.05.2005 00:27
ciprian wrote: With Lagrange you have a^2/b+b^2/c+ c^2/a - (a+b+c)= ( (ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac )/a+b+c. who on earth can you obtain smth like this?
12.05.2005 08:27
You just use Lagrange identity for 3 numbers
22.06.2005 14:33
Andrei wrote: Rewrite the intial inequality to: $\frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a} \geq \frac{4(a-b)^2}{a+b+c}$. q.e.d. I guess the given inequality can be rewritten as : $\frac{(a^2-b^2)}{b}+\frac{(b^2-c^2)}{c}+\frac{(c^2-a^2)}{a} \geq \frac{4(a-b)^2}{a+b+c}$. Not as Andrei stated it to be.......Now how will you solve it?
22.06.2005 16:04
Andrei's right. We do the calculation $a^2/b -2a+b$
22.06.2005 16:32
I am so Dumb
28.08.2005 21:50
Is this problem hard or easy for those who have solved it ?!?!?!
28.08.2005 22:54
ciprian wrote: You just use Lagrange identity for 3 numbers i forgot about this! what's lagrange identity?
28.08.2005 23:19
thanks i think i have seen it in Kedlaya's notes
26.09.2005 17:25
ciprian wrote: With Lagrange you have a^2/b+b^2/c+ c^2/a - (a+b+c)= ( (ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac )/a+b+c. So you have to prove that (ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac >= 4(a-b)^2.But (ab-c^2)^2/ac >= 0 and (ac-b^2)^2/bc + (bc - a^2)^2/ab >= (ac-b^2-bc+a^2)^2/b(a+c) =(a-b)^2(a+b+c)^2/b(a+c). With AM-GM you have b(a+c) <= (a+b+c)^2/4 so (a-b)^2(a+b+c)^2/b(a+c) >= 4(a-b)^2. We get a^2/b+b^2/c+ c^2/a - (a+b+c) >= 4(a-b)^2/(a+b+c). Could someone explain it to me with more details?
28.09.2005 16:09
ciprian wrote: With Lagrange you have$a^2/b+b^2/c+ c^2/a - (a+b+c)= ( (ac-b^2)^2/bc + \dfrac{(bc - a^2)^2}{ab} + \dfrac{(ab-c^2)^2}{ac} )-a+b+c$. So you have to prove that $(ac-b^2)^2/bc + (bc - a^2)^2/ab + (ab-c^2)^2/ac \geq 4(a-b)^2.But (ab-c^2)^2/ac \geq 0$ and $(ac-b^2)^2/bc + (bc - a^2)^2/ab \geq (ac-b^2-bc+a^2)^2/b(a+c) =(a-b)^2(a+b+c)^2/b(a+c)$. With AM-GM you have$b(a+c) \leq (a+b+c)^2/4 so (a-b)^2(a+b+c)^2/b(a+c) \geq 4(a-b)^2$. We get $a^2/b+b^2/c+ c^2/a - b+c) \geq 4(a-b)^2/(a+b+c)$.
24.03.2013 01:46
We have $\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\geq a+b+c+\dfrac{4(a-b)^2}{a+b+c} \Leftrightarrow$ $\dfrac{a^2}{b} + b - 2a +\dfrac{b^2}{c} + c - 2b +\dfrac{c^2}{a}+ a - 2c \geq \dfrac{4(a-b)^2}{a+b+c} \Leftrightarrow$ $\dfrac{(a-b)^2}{b} + \dfrac{(b-c)^2}{c} + \dfrac{(c-a)^2}{a} \geq \dfrac{4(a-b)^2}{a+b+c}$ Furthermore, by Cauchy, we have that $\dfrac{(a-b)^2}{b} + \dfrac{(a-b)^2}{a+c} \ge \dfrac{4(a-b)^2}{a+b+c}$ Therefore, its enough to prove that $\dfrac{(a-b)^2}{b} + \dfrac{(b-c)^2}{c} + \dfrac{(c-a)^2}{a} \geq \dfrac{(a-b)^2}{b} + \dfrac{(a-b)^2}{a+c} \Leftrightarrow$ $(a+c) \left ( \dfrac{(b-c)^2}{c} + \dfrac{(c-a)^2}{a} \right ) \ge (a-b)^2$, which is also Cauchy.
31.03.2013 06:05
Let $a_1,a_2,\cdots,a_n$ be positive real numbers. Prove the inequality\[\frac{a_1^2}{a_2}+\frac{a_2^2}{a_3}+\cdots+ \frac{a_{n-1}^2}{a_n}+\frac{a_n^2}{a_1}\geq a_1+a_2+\cdots+a_n+\frac{4(a_1-a_2)^2}{a_1+a_2+\cdots+a_n}.\] $\Leftrightarrow $\[ \frac{(a_1-a_2)^2}{a_2}+\frac{(a_2-a_3)^2}{a_3}+\cdots+ \frac{(a_{n-1}-a_n)^2}{a_n}+\frac{(a_n-a_1)^2}{a_1}\geq \frac{4(a_1-a_2)^2}{a_1+a_2+\cdots+a_n}.\] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=2995638
31.03.2013 14:03
sqing wrote: Let $a_1,a_2,\cdots,a_n$ be positive real numbers. Prove the inequality\[\frac{a_1^2}{a_2}+\frac{a_2^2}{a_3}+\cdots+ \frac{a_{n-1}^2}{a_n}+\frac{a_n^2}{a_1}\geq a_1+a_2+\cdots+a_n+\frac{4(a_1-a_2)^2}{a_1+a_2+\cdots+a_n}.\] $\Leftrightarrow $\[ \frac{(a_1-a_2)^2}{a_2}+\frac{(a_2-a_3)^2}{a_3}+\cdots+ \frac{(a_{n-1}-a_n)^2}{a_n}+\frac{(a_n-a_1)^2}{a_1}\geq \frac{4(a_1-a_2)^2}{a_1+a_2+\cdots+a_n}.\] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=2995638 Generalization Let $a_1,a_2,\cdots,a_n$ be positive real numbers and $r\in {{\mathbb{N}}^{*}}$. Prove the inequality \[\frac{a_{1}^{r+1}}{a_{2}^{r}}+\frac{a_{2}^{r+1}}{a_{3}^{r}}+\cdots +\frac{a_{n-1}^{r+1}}{a_{n}^{r}}+\frac{a_{n}^{r+1}}{a_{1}^{r}}\ge {{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}+\frac{4{{({{a}_{1}}-{{a}_{2}})}^{2}}}{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}.\] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=2995638
31.08.2013 01:47
arqady wrote: $\sum_{cyc}\left(\frac{a^2}{b}-a\right)=\sum_{cyc}\left(\frac{a^2}{b}-2a+b\right)=\sum_{cyc}\frac{(a-b)^2}{b}$ $\geq\frac{(a-b+c-b+a-c)^2}{a+b+c}=\frac{4(a-b)^2}{a+b+c}$. http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=551876 http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&t=378359&p=2090931&hilit=inequality+2005#p2090931 http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&t=347475&hilit=inequality+2005 http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&t=377018
25.04.2014 10:54
I learned too much andrei!thanks a lot:)
05.05.2014 14:56
Fixing $ \text\LaTeX $ in ciprian's solution: By Lagrange we have $\frac{a^2}{b}+\frac{b^2}{c}+ \frac{c^2}{a} - (a+b+c)= \frac{ \frac{\left(ac-b^2 \right)^2}{bc} + \frac{\left(bc - a^2\right)^2}{ab} + \frac{\left(ab-c^2\right)^2}{ac}}{a+b+c}$ So we have to prove that $\frac{(ac-b^2)^2}{bc} + \frac{(bc - a^2)^2}{ab} + \frac{(ab-c^2)^2}{ac}\geq 4(a-b)^2$ But $\frac{(ab-c^2)^2}{ac}\geq 0$ and $\frac{(ac-b^2)^2}{bc} + \frac{(bc - a^2)^2}{ab} \geq \frac{(ac-b^2-bc+a^2)^2}{b(a+c)} = \frac{(a-b)^2(a+b+c)^2}{b(a+c)}$ By $\text{AM-GM}$ we have $b(a+c) \leq \frac{(a+b+c)^2}{4} \implies \frac{(a-b)^2(a+b+c)^2}{b(a+c)} \geq 4(a-b)^2$ Hence we get $\frac{a^2}{b}+\frac{b^2}{c}+ \frac{c^2}{a} - (a+b+c) \geq \frac{4(a-b)^2}{(a+b+c)}$
02.05.2022 15:20
Note that we need to prove $(\frac{a^2}{b} - a) + (\frac{b^2}{c} - b) + (\frac{c^2}{a} - c) \ge \frac{4(a-b)^2}{a+b+c}$ or $\frac{a^2-ab}{b} + \frac{b^2-bc}{c} + \frac{c^2-ca}{a} \ge \frac{4(a-b)^2}{a+b+c}$ or $(\frac{a^2-ab}{b} + b - a) + (\frac{b^2-bc}{c} + c - b) + (\frac{c^2-ca}{a} + a - c) \ge \frac{4(a-b)^2}{a+b+c}$ or $\frac{(a-b)^2}{b} + \frac{(b-c)^2}{c} + \frac{(c-a)^2}{a} \ge \frac{4(a-b)^2}{a+b+c}$. Using titu we have $\frac{(a-b)^2}{b} + \frac{(b-c)^2}{c} + \frac{(c-a)^2}{a} \ge \frac{(|a-b)| + |b-c| + |c-a|)^2}{a+b+c} \ge \frac{4(a-b)^2}{a+b+c}$ so we need to prove $|a-b)| + |b-c| + |c-a| \ge 2(a-b)$ which is true.
02.05.2022 18:03
Let $a,b,c$ be positive real numbers. Prove the inequality \[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}>a+b-2c+\frac{5(a-b)^2}{a+b}.\]
03.05.2022 02:46
Let $a,b,c$ be positive real numbers. Prove the inequality \[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}>2(a+b-6c)+\frac{7(a-b)^2}{a+b}\]