Problem

Source: Izho Day 2 Problem 6

Tags: permutation, function, inequalities



$\indent$ For a positive integer $n$, let $S_n$ be the set of bijective functions from $\{1,2,\dots ,n\}$ to itself. For a pair of positive integers $(a,b)$ such that $1 \leq a <b \leq n$, and for a permutation $\sigma \in S_n$, we say the pair $(a,b)$ is expanding for $\sigma$ if $|\sigma (a)- \sigma(b)| \geq |a-b|$ $\indent$ (a) Is it true that for all integers $n > 1$, there exists $\sigma \in S_n$ so that the number of pairs $(a,b)$ that are expanding for permutation $\sigma$ is less than $1000n\sqrt n$ ? $\indent$ (b) Does there exist a positive integer $n>1$ and a permutation $\sigma \in S_n$ so that the number of pairs $(a,b)$ that are expanding for the permutation $\sigma$ is less than $\frac{n\sqrt n}{1000}$?