The incircle of the triangle $ABC$ is tangent to $BC$,$CA$ and $AB$ at $A_1$,$B_1$ and $C_1$ respectively. In triangles $AB_1C_1$, $BC_1A_1$ and $CB_1A_1$ points $H_1$,$H_2$ and $H_3$ are orthocenters. Prove that the triangles $A_1B_1C_1$ and $H_1H_2H_3$ are equal.
Problem
Source: Belarusian National Olympiad 2021
Tags: geometry
CrazyInMath
01.01.2025 16:00
Lemma: If triangle $XYZ$ has circumcenter $O$ and orthocenter $H$, then $h=x+y+z-2o$.
Proof: Use vectors. As $\overrightarrow{OH}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$
We have $\overrightarrow{XA}+\overrightarrow{XB}+\overrightarrow{XC}=3\overrightarrow{XO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{XO}+\overrightarrow{OH}$.
So $\overrightarrow{XH}=\overrightarrow{XO}+\overrightarrow{OH}=\overrightarrow{XA}+\overrightarrow{XB}+\overrightarrow{XC}-2\overrightarrow{XO}$
rename $A_1, B_1, C_1$ to $D, E, F$ and let the incenter be $I$.
use complex numbers with incircle as the unit circle.
we have $a=\frac{2ef}{e+f}, b=\frac{2fd}{f+d}, c=\frac{2de}{d+e}$
Let the circumcenters of $EAF, FBD, DCE$ be $O_1, O_2, O_3$ respectively
As $AEIF$ is cyclic with circumcenter being the midpoint of $AI$, we have $o_1=\frac{ef}{e+f}$
With the lemma we have $h_1=a+e+f-2o_1=e+f$ for $o_1=\frac{a+0}{2}$
and similarly we have $h_2=f+d, h_3=d+e$.
Therefore $H_1H_2=|(e+f)-(f+d)|=|e-d|=DE$, similarly $H_2H_3=EF, H_3H_1=FD$.
aa4
01.01.2025 20:59
Let $I$ be the incentre of triangle $ABC$. Then $H_1, H_2, H_3$ are the reflections of I over $B_1C_1, A_1C_1, A_1B_1$ respectively. From there, we see that $H_1H_2H_3$ is thus a dilation of the medial triangle of $A_1B_1C_1$ by a factor of 2 with centre $I$, and so it is congruent to triangle $A_1B_1C_1$.