Problem

Source: 2025 Vietnam National Olympiad - Problem 5

Tags: combinatorics, grid



Consider a $3k \times 3k$ square grid (where $k$ is a positive integer), the cells in the grid are coordinated in terms of columns and rows: Cell $(i, j)$ is at the $i^{\text{th}}$ column from left to right and the $j^{\text{th}}$ row from bottom up. We want to place $4k$ marbles in the cells of the grid, with each cell containing at most one marble, such that - Each row and each column has at least one marble - For each marble, there is another marble placed on the same row or column with that marble. a) Assume $k=1$. Determine the number of ways to place the marbles to satisfy the above conditions (Two ways to place marbles are different if there is a cell $(i, j)$ having a marble placed in one way but not in the other way). b) Assume $k \geq 1$. Find the largest positive integer $N$ such that if we mark any $N$ cells on the board, there is always a way to place $4k$ marbles satisfying the above conditions such that none of the marbles are placed on any of the marked cells.