Problem

Source:

Tags: induction, modular arithmetic, combinatorics proposed, combinatorics



For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$. (i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$. (ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$. (The number $|P|$ is the size of set $P$) Dan Schwarz, Romania