Problem

Source: Bulgarian Autumn Math Competition 2024

Tags: number theory, lattice, squarefree



$9.3$ A natural number is called square-free, if it is not divisible by the square of any prime number. For a natural number $a$, we consider the number $f(a) = a^{a+1} + 1$. Prove that: a) if $a$ is even, then $f(a)$ is not square-free b) there exist infinitely many odd $a$ for which $f(a)$ is not square-free $9.4$ We will call a generalized $2n$-parallelogram a convex polygon with $2n$ sides, so that, traversed consecutively, the $k$th side is parallel and equal to the $(n+k)$th side for $k=1, 2, ... , n$. In a rectangular coordinate system, a generalized parallelogram is given with $50$ vertices, each with integer coordinates. Prove that its area is at least $300$.