Problem

Source: Cono Sur 2024 P2

Tags: geometry, vector, barycentric coordinates, complex numbers



Let $ABC$ be a triangle. Let $A_1$ and $A_2$ be points on side $BC, B_1$ and $B_2$ be points on side $CA$ and $C_1$ and $C_2$ be points on side $AB$ such that $A_1A_2B_1B_2C_1C_2$ is a convex hexagon and that $B,A_1,A_2$ and $C$ are located in that order on side $BC$. We say that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if there exists a triangle $PQR$ and there exist $X,Y$ and $Z$ on sides $QR, RP$ and $PQ$ respectively, such that triangle $AB_2C_1$ is congruent in that order to triangle $PYZ$, triangle $BA_1C_2$ is congruent in that order to triangle $QXZ$ and triangle $CA_2B_1$ is congruent in that order to triangle $RXY$. Prove that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if and only if the centroids of triangles $A_1B_1C_1$ and $A_2B_2C_2$ coincide.