Problem

Source: TSTST 2024, problem 3

Tags: USA TSTST, Tstst, number theory



Let $A = \{a_1, \dots, a_{2024}\}$ be a set of $2024$ pairwise distinct real numbers. Assume that there exist positive integers $b_1, b_2,\dotsc,b_{2024}$ such that \[ a_1b_1 + a_2b_2 + \dots + a_{2024}b_{2024} = 0. \]Prove that one can choose $a_{2025}, a_{2026}, a_{2027}, \dots$ such that $a_k \in A$ for all $k \ge 2025$ and, for every positive integer $d$, there exist infinitely many positive integers $n$ satisfying \[ \sum_{k=1}^n a_k k^d = 0. \]Daniel Zhu