Problem

Source: SMO 2024

Tags: number theory, Divisibility



Suppose $p$ is a prime number and $x, y, z$ are integers satisfying $0 < x < y < z <p$. If $x^3, y^3, z^3$ have equal remainders when divided by $p$, prove that $x ^ 2 + y ^ 2 + z ^ 2$ is divisible by $x + y + z$.