Problem

Source: 2024 CTST P14

Tags: combinatorics



For a positive integer $n$ and a subset $S$ of $\{1, 2, \dots, n\}$, let $S$ be "$n$-good" if and only if for any $x$, $y\in S$ (allowed to be same), if $x+y\leq n$, then $x+y\in S$. Let $r_n$ be the smallest real number such that for any positive integer $m\leq n$, there is always a $m$-element "$n$-good" set, so that the sum of its elements is not more than $m\cdot r_n$. Prove that there exists a real number $\alpha$ such that for any positive integer $n$, $|r_n-\alpha n|\leq 2024.$