Problem

Source: Bulgaria MO Regional round 2024, 12.2

Tags: algebra, inequalities, analysis, Sequence



Let $N$ be a positive integer. The sequence $x_1, x_2, \ldots$ of non-negative reals is defined by $$x_n^2=\sum_{i=1}^{n-1} \sqrt{x_ix_{n-i}}$$for all positive integers $n>N$. Show that there exists a constant $c>0$, such that $x_n \leq \frac{n} {2}+c$ for all positive integers $n$.